2,143 research outputs found

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    Evolutionary Dynamic Optimization and Machine Learning

    Full text link
    Evolutionary Computation (EC) has emerged as a powerful field of Artificial Intelligence, inspired by nature's mechanisms of gradual development. However, EC approaches often face challenges such as stagnation, diversity loss, computational complexity, population initialization, and premature convergence. To overcome these limitations, researchers have integrated learning algorithms with evolutionary techniques. This integration harnesses the valuable data generated by EC algorithms during iterative searches, providing insights into the search space and population dynamics. Similarly, the relationship between evolutionary algorithms and Machine Learning (ML) is reciprocal, as EC methods offer exceptional opportunities for optimizing complex ML tasks characterized by noisy, inaccurate, and dynamic objective functions. These hybrid techniques, known as Evolutionary Machine Learning (EML), have been applied at various stages of the ML process. EC techniques play a vital role in tasks such as data balancing, feature selection, and model training optimization. Moreover, ML tasks often require dynamic optimization, for which Evolutionary Dynamic Optimization (EDO) is valuable. This paper presents the first comprehensive exploration of reciprocal integration between EDO and ML. The study aims to stimulate interest in the evolutionary learning community and inspire innovative contributions in this domain

    A Very Brief Introduction to Machine Learning With Applications to Communication Systems

    Get PDF
    Given the unprecedented availability of data and computing resources, there is widespread renewed interest in applying data-driven machine learning methods to problems for which the development of conventional engineering solutions is challenged by modelling or algorithmic deficiencies. This tutorial-style paper starts by addressing the questions of why and when such techniques can be useful. It then provides a high-level introduction to the basics of supervised and unsupervised learning. For both supervised and unsupervised learning, exemplifying applications to communication networks are discussed by distinguishing tasks carried out at the edge and at the cloud segments of the network at different layers of the protocol stack

    An AI-Layered with Multi-Agent Systems Architecture for Prognostics Health Management of Smart Transformers:A Novel Approach for Smart Grid-Ready Energy Management Systems

    Get PDF
    After the massive integration of distributed energy resources, energy storage systems and the charging stations of electric vehicles, it has become very difficult to implement an efficient grid energy management system regarding the unmanageable behavior of the power flow within the grid, which can cause many critical problems in different grid stages, typically in the substations, such as failures, blackouts, and power transformer explosions. However, the current digital transition toward Energy 4.0 in Smart Grids allows the integration of smart solutions to substations by integrating smart sensors and implementing new control and monitoring techniques. This paper is proposing a hybrid artificial intelligence multilayer for power transformers, integrating different diagnostic algorithms, Health Index, and life-loss estimation approaches. After gathering different datasets, this paper presents an exhaustive algorithm comparative study to select the best fit models. This developed architecture for prognostic (PHM) health management is a hybrid interaction between evolutionary support vector machine, random forest, k-nearest neighbor, and linear regression-based models connected to an online monitoring system of the power transformer; these interactions are calculating the important key performance indicators which are related to alarms and a smart energy management system that gives decisions on the load management, the power factor control, and the maintenance schedule planning
    corecore