1 research outputs found

    Développement d'approches de calage efficaces pour les modèles hydrologiques coûteux en temps de calcul, au moyen du modèle HYDROTEL

    Get PDF
    Le calage des modèles hydrologiques peut se formuler comme un problème d’optimisation sans dérivée, également appelé problème d’optimisation de « boîte noire » ; c’est-à-dire qu’il est impossible pour l’optimiseur d’exploiter la structure de la fonction objectif dans le but d’améliorer le processus de calage. Ce genre de problème d’optimisation peut devenir coûteux en temps de calcul lorsque des modèles hydrologiques distribués spatialement sont utilisés. L’exécution d’une seule simulation à l’aide de ce type de modèles peut prendre plusieurs minutes et l’optimisation peut requérir plusieurs milliers de simulations. Le calage peut donc impliquer des temps de calcul importants et une approche d’optimisation efficace se doit d’être établie de manière à rendre ces outils applicables aux contextes opérationnels. La première phase de cette recherche découle de travaux précédents qui ont permis d’identifier le développement prometteur d’une nouvelle stratégie de calage automatique pour les modèles hydrologiques coûteux en temps de calcul. Cette nouvelle approche d’optimisation adaptée au calage du modèle hydrologique HYDROTEL, distribué, à base physique et coûteux en temps de calcul, est développée en combinant les strategies d’optimisation efficaces de deux algorithmes existants, soient « Dynamically Dimensioned Search » (DDS) et « Mesh Adaptive Direct Search » (MADS). D’abord, la capacité d’exploration globale de l’espace de solutions (espace paramétrique) de l’algorithme DDS permet l’obtention rapide d’un jeu de paramètres produisant une bonne valeur de la function objectif (mesurant l’écart entre les débits observés et simulés à l’exutoire d’un basin versant). Ensuite, les stratégies de recherche de l’algorithme MADS permettent de fournir un raffinement local où les conditions d’optimalité du jeu de paramètre final sont satisfaites. Les résultats obtenus à l’aide de cette nouvelle méthode démontrent que, pour le calage d’HYDROTEL à 10 paramètres de calage, des économies moyennes de 70 % en temps de calcul sont possibles par rapport aux algorithmes de calage traditionnellement employés. Alors que 40 % d’économies en temps de calcul est plutôt obtenu lors du calage d’HYDROTEL à 19 paramètres, sans oublier que les valeurs finales de la fonction objectif sont comparables à celles obtenues avec des algorithmes d’optimisation existants. La deuxième phase vise à évaluer le potentiel d’utilisation de différentes avenues de construction de modèles substituts. D’une part, les modèles à fidélité réduite selon trois axes de simplification du modèle original sont examinés : (1) la diminution du nombre de stations météorologiques virtuelles sur le territoire, (2) la diminution de la durée de la période de simulation et (3) la diminution de la discrétisation spatiale du territoire en ajustant le nombre d’Unités Hydrologiques Relativement Homogène (UHRH) qui modélisent le bassin versant. La combinaison de ces trois axes de simplification sera également évaluée. Les critères d’évaluation sont la représentativité du modèle substitut envers le modèle original et la diminution du temps de calcul pour la simulation. Les résultats démontrent que la combinaison des trois axes de simplification permet d’offrir des modèles substituts ayant des niveaux de représentativité et des temps de calcul intéressants pour l’utilisation dans un contexte de calibration. D’autre part, la représentativité des fonctions de surface telles que les fonctions polynomiales et les modèles de Krigeage sera évaluée. Une analyse selon diverses tailles de l’historique des solutions qui permet de construire la fonction de surface et diverses tailles de l’espace paramétrique permettra de tirer les capacités de représentativité des fonctions de surface. Les résultats démontrent que les deux types de fonctions de surface peuvent très bien représenter des sous-espaces paramétriques de petite taille avec un nombre minimal de 100 solutions. Puis, une troisième phase vise à intégrer les modèles substituts avantageux en terme de temps de calcul au sein de la nouvelle approche hybride d’optimisation DDS-MADS. Plusieurs expérimentations proposeront différents cadres d’optimisation pour la calibration du modèle hydrologique HYDROTEL. Au final, en fonction des objectifs de calibration et des contraintes dont l’utilisateur fait face, quelques cadres d’optimisation sont retenus. Certains offrent une meilleure réduction du temps de calcul et d’autres performent davantage en terme de valeur finale de la fonction objectif. Le meilleur compromis entre la diminution du temps de calcul et la qualité des valeurs finales de la fonction objectif est obtenu lors de l’utilisation de l’approche hybride DDS-MADS performant uniquement sur les modèles à fidélité réduite, suivi de l’algorithme MADS performant sur les modèles hydrologiques originaux
    corecore