60,143 research outputs found

    Solving ill-posed bilevel programs

    No full text
    This paper deals with ill-posed bilevel programs, i.e., problems admitting multiple lower-level solutions for some upper-level parameters. Many publications have been devoted to the standard optimistic case of this problem, where the difficulty is essentially moved from the objective function to the feasible set. This new problem is simpler but there is no guaranty to obtain local optimal solutions for the original optimistic problem by this process. Considering the intrinsic non-convexity of bilevel programs, computing local optimal solutions is the best one can hope to get in most cases. To achieve this goal, we start by establishing an equivalence between the original optimistic problem an a certain set-valued optimization problem. Next, we develop optimality conditions for the latter problem and show that they generalize all the results currently known in the literature on optimistic bilevel optimization. Our approach is then extended to multiobjective bilevel optimization, and completely new results are derived for problems with vector-valued upper- and lower-level objective functions. Numerical implementations of the results of this paper are provided on some examples, in order to demonstrate how the original optimistic problem can be solved in practice, by means of a special set-valued optimization problem

    Optimistic Robust Optimization With Applications To Machine Learning

    Get PDF
    Robust Optimization has traditionally taken a pessimistic, or worst-case viewpoint of uncertainty which is motivated by a desire to find sets of optimal policies that maintain feasibility under a variety of operating conditions. In this paper, we explore an optimistic, or best-case view of uncertainty and show that it can be a fruitful approach. We show that these techniques can be used to address a wide variety of problems. First, we apply our methods in the context of robust linear programming, providing a method for reducing conservatism in intuitive ways that encode economically realistic modeling assumptions. Second, we look at problems in machine learning and find that this approach is strongly connected to the existing literature. Specifically, we provide a new interpretation for popular sparsity inducing non-convex regularization schemes. Additionally, we show that successful approaches for dealing with outliers and noise can be interpreted as optimistic robust optimization problems. Although many of the problems resulting from our approach are non-convex, we find that DCA or DCA-like optimization approaches can be intuitive and efficient

    An Evolutionary Algorithm to Optimize Log/Restore Operations within Optimistic Simulation Platforms

    Get PDF
    In this work we address state recoverability in advanced optimistic simulation systems by proposing an evolutionary algorithm to optimize at run-time the parameters associated with state log/restore activities. Optimization takes place by adaptively selecting for each simulation object both (i) the best suited log mode (incremental vs non-incremental) and (ii) the corresponding optimal value of the log interval. Our performance optimization approach allows to indirectly cope with hidden effects (e.g., locality) as well as cross-object effects due to the variation of log/restore parameters for different simulation objects (e.g., rollback thrashing). Both of them are not captured by literature solutions based on analytical models of the overhead associated with log/restore tasks. More in detail, our evolutionary algorithm dynamically adjusts the log/restore parameters of distinct simulation objects as a whole, towards a well suited configuration. In such a way, we prevent negative effects on performance due to the biasing of the optimization towards individual simulation objects, which may cause reduced gains (or even decrease) in performance just due to the aforementioned hidden and/or cross-object phenomena. We also present an application-transparent implementation of the evolutionary algorithm within the ROme OpTimistic Simulator (ROOT-Sim), namely an open source, general purpose simulation environment designed according to the optimistic synchronization paradigm

    Safe Local Exploration for Replanning in Cluttered Unknown Environments for Micro-Aerial Vehicles

    Full text link
    In order to enable Micro-Aerial Vehicles (MAVs) to assist in complex, unknown, unstructured environments, they must be able to navigate with guaranteed safety, even when faced with a cluttered environment they have no prior knowledge of. While trajectory optimization-based local planners have been shown to perform well in these cases, prior work either does not address how to deal with local minima in the optimization problem, or solves it by using an optimistic global planner. We present a conservative trajectory optimization-based local planner, coupled with a local exploration strategy that selects intermediate goals. We perform extensive simulations to show that this system performs better than the standard approach of using an optimistic global planner, and also outperforms doing a single exploration step when the local planner is stuck. The method is validated through experiments in a variety of highly cluttered environments including a dense forest. These experiments show the complete system running in real time fully onboard an MAV, mapping and replanning at 4 Hz.Comment: Accepted to ICRA 2018 and RA-L 201

    Optimistic Optimization of Gaussian Process Samples

    Full text link
    Bayesian optimization is a popular formalism for global optimization, but its computational costs limit it to expensive-to-evaluate functions. A competing, computationally more efficient, global optimization framework is optimistic optimization, which exploits prior knowledge about the geometry of the search space in form of a dissimilarity function. We investigate to which degree the conceptual advantages of Bayesian Optimization can be combined with the computational efficiency of optimistic optimization. By mapping the kernel to a dissimilarity, we obtain an optimistic optimization algorithm for the Bayesian Optimization setting with a run-time of up to O(NlogN)\mathcal{O}(N \log N). As a high-level take-away we find that, when using stationary kernels on objectives of relatively low evaluation cost, optimistic optimization can be strongly preferable over Bayesian optimization, while for strongly coupled and parametric models, good implementations of Bayesian optimization can perform much better, even at low evaluation cost. We argue that there is a new research domain between geometric and probabilistic search, i.e. methods that run drastically faster than traditional Bayesian optimization, while retaining some of the crucial functionality of Bayesian optimization.Comment: 10 pages, 6 figure

    Online Optimization with Memory and Competitive Control

    Get PDF
    This paper presents competitive algorithms for a novel class of online optimization problems with memory. We consider a setting where the learner seeks to minimize the sum of a hitting cost and a switching cost that depends on the previous p decisions. This setting generalizes Smoothed Online Convex Optimization. The proposed approach, Optimistic Regularized Online Balanced Descent, achieves a constant, dimension-free competitive ratio. Further, we show a connection between online optimization with memory and online control with adversarial disturbances. This connection, in turn, leads to a new constant-competitive policy for a rich class of online control problems
    corecore