23,532 research outputs found

    Time-Consistent Mean-Variance Portfolio Selection in Discrete and Continuous Time

    Full text link
    It is well known that mean-variance portfolio selection is a time-inconsistent optimal control problem in the sense that it does not satisfy Bellman's optimality principle and therefore the usual dynamic programming approach fails. We develop a time- consistent formulation of this problem, which is based on a local notion of optimality called local mean-variance efficiency, in a general semimartingale setting. We start in discrete time, where the formulation is straightforward, and then find the natural extension to continuous time. This complements and generalises the formulation by Basak and Chabakauri (2010) and the corresponding example in Bj\"ork and Murgoci (2010), where the treatment and the notion of optimality rely on an underlying Markovian framework. We justify the continuous-time formulation by showing that it coincides with the continuous-time limit of the discrete-time formulation. The proof of this convergence is based on a global description of the locally optimal strategy in terms of the structure condition and the F\"ollmer-Schweizer decomposition of the mean-variance tradeoff. As a byproduct, this also gives new convergence results for the F\"ollmer-Schweizer decomposition, i.e. for locally risk minimising strategies

    Networked PID control design : a pseudo-probabilistic robust approach

    Get PDF
    Networked Control Systems (NCS) are feedback/feed-forward control systems where control components (sensors, actuators and controllers) are distributed across a common communication network. In NCS, there exist network-induced random delays in each channel. This paper proposes a method to compensate the effects of these delays for the design and tuning of PID controllers. The control design is formulated as a constrained optimization problem and the controller stability and robustness criteria are incorporated as design constraints. The design is based on a polytopic description of the system using a Poisson pdf distribution of the delay. Simulation results are presented to demonstrate the performance of the proposed method

    Learning and Designing Stochastic Processes from Logical Constraints

    Get PDF
    Stochastic processes offer a flexible mathematical formalism to model and reason about systems. Most analysis tools, however, start from the premises that models are fully specified, so that any parameters controlling the system's dynamics must be known exactly. As this is seldom the case, many methods have been devised over the last decade to infer (learn) such parameters from observations of the state of the system. In this paper, we depart from this approach by assuming that our observations are {\it qualitative} properties encoded as satisfaction of linear temporal logic formulae, as opposed to quantitative observations of the state of the system. An important feature of this approach is that it unifies naturally the system identification and the system design problems, where the properties, instead of observations, represent requirements to be satisfied. We develop a principled statistical estimation procedure based on maximising the likelihood of the system's parameters, using recent ideas from statistical machine learning. We demonstrate the efficacy and broad applicability of our method on a range of simple but non-trivial examples, including rumour spreading in social networks and hybrid models of gene regulation

    On dynamic spectral risk measures, a limit theorem and optimal portfolio allocation

    Full text link
    In this paper we propose the notion of continuous-time dynamic spectral risk-measure (DSR). Adopting a Poisson random measure setting, we define this class of dynamic coherent risk-measures in terms of certain backward stochastic differential equations. By establishing a functional limit theorem, we show that DSRs may be considered to be (strongly) time-consistent continuous-time extensions of iterated spectral risk-measures, which are obtained by iterating a given spectral risk-measure (such as Expected Shortfall) along a given time-grid. Specifically, we demonstrate that any DSR arises in the limit of a sequence of such iterated spectral risk-measures driven by lattice-random walks, under suitable scaling and vanishing time- and spatial-mesh sizes. To illustrate its use in financial optimisation problems, we analyse a dynamic portfolio optimisation problem under a DSR.Comment: To appear in Finance and Stochastic

    Multi-objective Robust Strategy Synthesis for Interval Markov Decision Processes

    Full text link
    Interval Markov decision processes (IMDPs) generalise classical MDPs by having interval-valued transition probabilities. They provide a powerful modelling tool for probabilistic systems with an additional variation or uncertainty that prevents the knowledge of the exact transition probabilities. In this paper, we consider the problem of multi-objective robust strategy synthesis for interval MDPs, where the aim is to find a robust strategy that guarantees the satisfaction of multiple properties at the same time in face of the transition probability uncertainty. We first show that this problem is PSPACE-hard. Then, we provide a value iteration-based decision algorithm to approximate the Pareto set of achievable points. We finally demonstrate the practical effectiveness of our proposed approaches by applying them on several case studies using a prototypical tool.Comment: This article is a full version of a paper accepted to the Conference on Quantitative Evaluation of SysTems (QEST) 201

    Idempotent structures in optimization

    Get PDF
    Consider the set A = R ∪ {+∞} with the binary operations o1 = max and o2 = + and denote by An the set of vectors v = (v1,...,vn) with entries in A. Let the generalised sum u o1 v of two vectors denote the vector with entries uj o1 vj , and the product a o2 v of an element a ∈ A and a vector v ∈ An denote the vector with the entries a o2 vj . With these operations, the set An provides the simplest example of an idempotent semimodule. The study of idempotent semimodules and their morphisms is the subject of idempotent linear algebra, which has been developing for about 40 years already as a useful tool in a number of problems of discrete optimisation. Idempotent analysis studies infinite dimensional idempotent semimodules and is aimed at the applications to the optimisations problems with general (not necessarily finite) state spaces. We review here the main facts of idempotent analysis and its major areas of applications in optimisation theory, namely in multicriteria optimisation, in turnpike theory and mathematical economics, in the theory of generalised solutions of the Hamilton-Jacobi Bellman (HJB) equation, in the theory of games and controlled Marcov processes, in financial mathematics
    • …
    corecore