6,892 research outputs found

    Information Spectrum Approach to the Source Channel Separation Theorem

    Full text link
    A source-channel separation theorem for a general channel has recently been shown by Aggrawal et. al. This theorem states that if there exist a coding scheme that achieves a maximum distortion level d_{max} over a general channel W, then reliable communication can be accomplished over this channel at rates less then R(d_{max}), where R(.) is the rate distortion function of the source. The source, however, is essentially constrained to be discrete and memoryless (DMS). In this work we prove a stronger claim where the source is general, satisfying only a "sphere packing optimality" feature, and the channel is completely general. Furthermore, we show that if the channel satisfies the strong converse property as define by Han & verdu, then the same statement can be made with d_{avg}, the average distortion level, replacing d_{max}. Unlike the proofs there, we use information spectrum methods to prove the statements and the results can be quite easily extended to other situations

    Computation in Multicast Networks: Function Alignment and Converse Theorems

    Full text link
    The classical problem in network coding theory considers communication over multicast networks. Multiple transmitters send independent messages to multiple receivers which decode the same set of messages. In this work, computation over multicast networks is considered: each receiver decodes an identical function of the original messages. For a countably infinite class of two-transmitter two-receiver single-hop linear deterministic networks, the computing capacity is characterized for a linear function (modulo-2 sum) of Bernoulli sources. Inspired by the geometric concept of interference alignment in networks, a new achievable coding scheme called function alignment is introduced. A new converse theorem is established that is tighter than cut-set based and genie-aided bounds. Computation (vs. communication) over multicast networks requires additional analysis to account for multiple receivers sharing a network's computational resources. We also develop a network decomposition theorem which identifies elementary parallel subnetworks that can constitute an original network without loss of optimality. The decomposition theorem provides a conceptually-simpler algebraic proof of achievability that generalizes to LL-transmitter LL-receiver networks.Comment: to appear in the IEEE Transactions on Information Theor

    Q-CSMA: Queue-Length Based CSMA/CA Algorithms for Achieving Maximum Throughput and Low Delay in Wireless Networks

    Full text link
    Recently, it has been shown that CSMA-type random access algorithms can achieve the maximum possible throughput in ad hoc wireless networks. However, these algorithms assume an idealized continuous-time CSMA protocol where collisions can never occur. In addition, simulation results indicate that the delay performance of these algorithms can be quite bad. On the other hand, although some simple heuristics (such as distributed approximations of greedy maximal scheduling) can yield much better delay performance for a large set of arrival rates, they may only achieve a fraction of the capacity region in general. In this paper, we propose a discrete-time version of the CSMA algorithm. Central to our results is a discrete-time distributed randomized algorithm which is based on a generalization of the so-called Glauber dynamics from statistical physics, where multiple links are allowed to update their states in a single time slot. The algorithm generates collision-free transmission schedules while explicitly taking collisions into account during the control phase of the protocol, thus relaxing the perfect CSMA assumption. More importantly, the algorithm allows us to incorporate mechanisms which lead to very good delay performance while retaining the throughput-optimality property. It also resolves the hidden and exposed terminal problems associated with wireless networks.Comment: 12 page
    • …
    corecore