710,528 research outputs found
Quasi-dynamic Load and Battery Sizing and Scheduling for Stand-Alone Solar System Using Mixed-integer Linear Programming
Considering the intermittency of renewable energy systems, a sizing and
scheduling model is proposed for a finite number of static electric loads. The
model objective is to maximize solar energy utilization with and without
storage. For the application of optimal load size selection, the energy
production of a solar photovoltaic is assumed to be consumed by a finite number
of discrete loads in an off-grid system using mixed-integer linear programming.
Additional constraints are battery charge and discharge limitations and minimum
uptime and downtime for each unit. For a certain solar power profile the model
outputs optimal unit size as well as the optimal scheduling for both units and
battery charge and discharge (if applicable). The impact of different solar
power profiles and minimum up and down time constraints on the optimal unit and
battery sizes are studied. The battery size required to achieve full solar
energy utilization decreases with the number of units and with increased
flexibility of the units (shorter on and off-time). A novel formulation is
introduced to model quasi-dynamic units that gradually start and stop and the
quasi-dynamic units increase solar energy utilization. The model can also be
applied to search for the optimal number of units for a given cost function.Comment: 6 pages, 3 figures, accepted at The IEEE Conference on Control
Applications (CCA
Toward optimal X-ray flux utilization in breast CT
A realistic computer-simulation of a breast computed tomography (CT) system
and subject is constructed. The model is used to investigate the optimal number
of views for the scan given a fixed total X-ray fluence. The reconstruction
algorithm is based on accurate solution to a constrained, TV-minimization
problem, which has received much interest recently for sparse-view CT data.Comment: accepted to the 11th International Meeting on Fully Three-Dimensional
Image Reconstruction in Radiology and Nuclear Medicine 201
Basic research for the geodynamics program
Some objectives of this geodynamic program are: (1) optimal utilization of laser and VLBI observations as reference frames for geodynamics, (2) utilization of range difference observations in geodynamics, and (3) estimation techniques in crustal deformation analysis. The determination of Earth rotation parameters from different space geodetic systems is studied. Also reported on is the utilization of simultaneous laser range differences for the determination of baseline variation. An algorithm for the analysis of regional or local crustal deformation measurements is proposed along with other techniques and testing procedures. Some results of the reference from comparisons in terms of the pole coordinates from different techniques are presented
Multi-Round Contention in Wireless LANs with Multipacket Reception
Multi-packet reception (MPR) has been recognized as a powerful
capacity-enhancement technique for random-access wireless local area networks
(WLANs). As is common with all random access protocols, the wireless channel is
often under-utilized in MPR WLANs. In this paper, we propose a novel
multi-round contention random-access protocol to address this problem. This
work complements the existing random-access methods that are based on
single-round contention. In the proposed scheme, stations are given multiple
chances to contend for the channel until there are a sufficient number of
``winning" stations that can share the MPR channel for data packet
transmission. The key issue here is the identification of the optimal time to
stop the contention process and start data transmission. The solution
corresponds to finding a desired tradeoff between channel utilization and
contention overhead. In this paper, we conduct a rigorous analysis to
characterize the optimal strategy using the theory of optimal stopping. An
interesting result is that the optimal stopping strategy is a simple
threshold-based rule, which stops the contention process as soon as the total
number of winning stations exceeds a certain threshold. Compared with the
conventional single-round contention protocol, the multi-round contention
scheme significantly enhances channel utilization when the MPR capability of
the channel is small to medium. Meanwhile, the scheme automatically falls back
to single-round contention when the MPR capability is very large, in which case
the throughput penalty due to random access is already small even with
single-round contention
Working Paper 121 - Financing Goal 1 of the MDGs in Africa: Some Evidence from Cross-Country Data
This study explores the role of development assistance to finance the required growth to reduce extreme poverty by half in 2015 in Africa. The study utilizes the financing gap and “optimal” aid allocation models to explore the implications of efficient aid utilization and global-aid allocation on total aid required to meet goal 1 of the MDGs. The findings suggest that efficiency in the utilization of development assistance by recipients, or optimal disbursement of aid by donors would take the Africa region a long way in reaching the target without additional assistance. This evidence provides empirical support to the recent debate on aid-effectiveness in particular and reforming aid architecture in general.
Integrating process design and control: An application of optimal control to chemical processes
In this paper, the optimal design of process systems generically used in chemical industries is studied. The closely coupled nature of optimal design specification of the equipment, the determination of the optimal process parameters in steady-state, moreover, some issues of the application of optimal control is shown. The solution of the overall optimization problem including (i) optimal design of the equipment and (ii) specification of its optimal control strategy can be found relying on two different design concepts, namely, on the conventionally used sequential or, on the newly emerged simultaneous design approaches. This paper gives the theoretical background of the ideas and presents a comparative summary of the approaches. The two approaches are contrasted to each other in which the effects of the interaction of optimal process design and optimal control is highlighted. A new simultaneous optimization procedure providing economic and operability benefits over the traditional stand-alone approach is proposed. The applicability of the idea is demonstrated by means of a design study carried out for optimal design of a coaxial heat exchanger and a reactive distillation column for the synthesis of ethyl tert butyl ether (ETBE), relying on the benefits of the utilization of optimal control
- …
