11 research outputs found

    Optimal strategies in the average consensus problem

    Full text link
    We prove that for a set of communicating agents to compute the average of their initial positions (average consensus problem), the optimal topology of communication is given by a de Bruijn's graph. Consensus is then reached in a finitely many steps. A more general family of strategies, constructed by block Kronecker products, is investigated and compared to Cayley strategies.Comment: 9 pages; extended preprint with proofs of a CDC 2007 (Conference on decision and Control) pape

    The asymptotical error of broadcast gossip averaging algorithms

    Full text link
    In problems of estimation and control which involve a network, efficient distributed computation of averages is a key issue. This paper presents theoretical and simulation results about the accumulation of errors during the computation of averages by means of iterative "broadcast gossip" algorithms. Using martingale theory, we prove that the expectation of the accumulated error can be bounded from above by a quantity which only depends on the mixing parameter of the algorithm and on few properties of the network: its size, its maximum degree and its spectral gap. Both analytical results and computer simulations show that in several network topologies of applicative interest the accumulated error goes to zero as the size of the network grows large.Comment: 10 pages, 3 figures. Based on a draft submitted to IFACWC201

    Estimation distribuée basée sur un consensus en temps fini

    Get PDF
    National audienceDans cet article, nous traitons le problème de l'estimation distribuée dans un réseau de capteurs. En vue d'atteindre des performances similaires à celles obtenues dans un contexte centralisé, nous proposons un algorithme de consensus en temps fini. Ce consensus est atteint grâce à une séquence de matrices de consensus conjointement diagonalisables dont la synthèse est faite à partir de la matrice Laplacienne du graphe représentant les interactions entre noeuds du réseau

    Graph Laplacian based Matrix Design for Finite-Time Distributed Average Consensus

    Get PDF
    International audienceIn this paper, we consider the problem of finding a linear iteration scheme that yields distributed average consensus in a finite number of steps D. By modeling interactions between the nodes in the network by means of a time-invariant undirected graph, the problem is solved by deriving a set of D Laplacian based consensus matrices. We show that the number of steps is given by the number of nonzero distinct eigenvalues of the graph Laplacian matrix. Moreover the inverse of these eigenvalues constitute the step-sizes of the involved Laplacian based consensus matrices. When communications are made through an additive white Gaussian noise channel, based on an ensemble averaging method, we show how average consensus can be asymptotically reached. Performance analysis of the suggested protocol is given along with comparisons with other methods in the literature

    Distributed Control of Networked Nonlinear Euler-Lagrange Systems

    Get PDF
    Motivated by recent developments in formation and cooperative control of networked multi-agent systems, the main goal of this thesis is development of efficient synchronization and formation control algorithms for distributed control of networked nonlinear systems whose dynamics can be described by Euler-Lagrange (EL) equations. One of the main challenges in the design of the formation control algorithm is its optimality and robustness to parametric uncertainties, external disturbances and ability to reconfigure in presence of component, actuator, or sensor faults. Furthermore, the controller should be capable of handling switchings in the communication network topology. In this work, nonlinear optimal control techniques are studied for developing distributed controllers for networked EL systems. An individual cost function is introduced to design a controller that relies on only local information exchanges among the agents. In the development of the controller, it is assumed that the communication graph is not fixed (in other words the topology is switching). Additionally, parametric uncertainties and faults in the EL systems are considered and two approaches, namely adaptive and robust techniques are introduced to compensate for the effects of uncertainties and actuator faults. Next, a distributed H_infinity performance measure is considered to develop distributed robust controllers for uncertain networked EL systems. The developed distributed controller is obtained through rigorous analysis and by considering an individual cost function to enhance the robustness of the controllers in presence of parametric uncertainties and external bounded disturbances. Moreover, a rigorous analysis is conducted on the performance of the developed controllers in presence of actuator faults as well as fault diagnostic and identification (FDI) imperfections. Next, synchronization and set-point tracking control of networked EL systems are investigated in presence of three constraints, namely, (i) input saturation constraints, (ii) unavailability of velocity feedback, and (iii) lack of knowledge on the system parameters. It is shown that the developed distributed controllers can accomplish the desired requirements and specification under the above constraints. Finally, a quaternion-based approach is considered for the attitude synchronization and set-point tracking control problem of formation flying spacecraft. Employing the quaternion in the control law design enables handling large rotations in the spacecraft attitude and, therefore, any singularities in the control laws are avoided. Furthermore, using the quaternion also enables one to guarantee boundedness of the control signals both with and without velocity feedback
    corecore