2,794 research outputs found

    Error Analysis of Semidiscrete Finite Element Methods for Inhomogeneous Time-Fractional Diffusion

    Get PDF
    We consider the initial boundary value problem for the inhomogeneous time-fractional diffusion equation with a homogeneous Dirichlet boundary condition and a nonsmooth right hand side data in a bounded convex polyhedral domain. We analyze two semidiscrete schemes based on the standard Galerkin and lumped mass finite element methods. Almost optimal error estimates are obtained for right hand side data f(x,t)∈L∞(0,T;HΛ™q(Ξ©))f(x,t)\in L^\infty(0,T;\dot H^q(\Omega)), βˆ’1<q≀1-1< q \le 1, for both semidiscrete schemes. For lumped mass method, the optimal L2(Ξ©)L^2(\Omega)-norm error estimate requires symmetric meshes. Finally, numerical experiments for one- and two-dimensional examples are presented to verify our theoretical results.Comment: 21 pages, 4 figure

    The Galerkin Finite Element Method for A Multi-term Time-Fractional Diffusion equation

    Get PDF
    We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite difference discretization of the time-fractional derivatives, and discuss its stability and error estimate. Extensive numerical experiments for one and two-dimension problems confirm the convergence rates of the theoretical results.Comment: 22 pages, 4 figure

    An Analysis of the Rayleigh-Stokes problem for a Generalized Second-Grade Fluid

    Get PDF
    We study the Rayleigh-Stokes problem for a generalized second-grade fluid which involves a Riemann-Liouville fractional derivative in time, and present an analysis of the problem in the continuous, space semidiscrete and fully discrete formulations. We establish the Sobolev regularity of the homogeneous problem for both smooth and nonsmooth initial data vv, including v∈L2(Ω)v\in L^2(\Omega). A space semidiscrete Galerkin scheme using continuous piecewise linear finite elements is developed, and optimal with respect to initial data regularity error estimates for the finite element approximations are derived. Further, two fully discrete schemes based on the backward Euler method and second-order backward difference method and the related convolution quadrature are developed, and optimal error estimates are derived for the fully discrete approximations for both smooth and nonsmooth initial data. Numerical results for one- and two-dimensional examples with smooth and nonsmooth initial data are presented to illustrate the efficiency of the method, and to verify the convergence theory.Comment: 23 pp, 4 figures. The error analysis of the fully discrete scheme is shortene
    • …
    corecore