11 research outputs found

    Changepoint Detection over Graphs with the Spectral Scan Statistic

    Full text link
    We consider the change-point detection problem of deciding, based on noisy measurements, whether an unknown signal over a given graph is constant or is instead piecewise constant over two connected induced subgraphs of relatively low cut size. We analyze the corresponding generalized likelihood ratio (GLR) statistics and relate it to the problem of finding a sparsest cut in a graph. We develop a tractable relaxation of the GLR statistic based on the combinatorial Laplacian of the graph, which we call the spectral scan statistic, and analyze its properties. We show how its performance as a testing procedure depends directly on the spectrum of the graph, and use this result to explicitly derive its asymptotic properties on few significant graph topologies. Finally, we demonstrate both theoretically and by simulations that the spectral scan statistic can outperform naive testing procedures based on edge thresholding and χ2\chi^2 testing

    Optimal Simultaneous Detection and Signal and Noise Power Estimation

    Full text link
    Simultaneous detection and estimation is important in many engineering applications. In particular, there are many applications where it is important to perform signal detection and Signal-to-Noise-Ratio (SNR) estimation jointly. Application of existing frameworks in the literature that handle simultaneous detection and estimation is not straightforward for this class of application. This paper therefore aims at bridging the gap between an existing framework, specifically the work by Middleton et al., and the mentioned application class by presenting a jointly optimal detector and signal and noise power estimators. The detector and estimators are given for the Gaussian observation model with appropriate conjugate priors on the signal and noise power. Simulation results affirm the superior performance of the optimal solution compared to the separate detection and estimation approaches.Comment: appears in 2014 IEEE International Symposium on Information Theory (ISIT

    Individual camera device identification from JPEG images

    Get PDF
    International audienceThe goal of this paper is to investigate the problem of source camera device identification for natural images in JPEG format. We propose an improved signal-dependent noise model describing the statistical distribution of pixels from a JPEG image. The noise model relies on the heteroscedastic noise parameters, that relates the variance of pixels’ noise with the expectation considered as unique fingerprints. It is also shown in the present paper that, non-linear response of pixels can be captured by characterizing the linear relation because those heteroscedastic parameters, which are used to identify source camera device. The identification problem is cast within the framework of hypothesis testing theory. In an ideal context where all model parameters are perfectly known, the Likelihood Ratio Test (LRT) is presented and its performance is theoretically established. The statistical performance of LRT serves as an upper bound of the detection power. In a practical identification, when the nuisance parameters are unknown, two generalized LRTs based on estimation of those parameters are established. Numerical results on simulated data and real natural images highlight the relevance of our proposed approach. While those results show a first positive proof of concept of the method, it still requires to be extended for a relevant comparison with PRNU-based approaches that benefit from years of experience

    Estimation, Decision and Applications to Target Tracking

    Get PDF
    This dissertation mainly consists of three parts. The first part proposes generalized linear minimum mean-square error (GLMMSE) estimation for nonlinear point estimation. The second part proposes a recursive joint decision and estimation (RJDE) algorithm for joint decision and estimation (JDE). The third part analyzes the performance of sequential probability ratio test (SPRT) when the log-likelihood ratios (LLR) are independent but not identically distributed. The linear minimum mean-square error (LMMSE) estimation plays an important role in nonlinear estimation. It searches for the best estimator in the set of all estimators that are linear in the measurement. A GLMMSE estimation framework is proposed in this disser- tation. It employs a vector-valued measurement transform function (MTF) and finds the best estimator among all estimators that are linear in MTF. Several design guidelines for the MTF based on a numerical example were provided. A RJDE algorithm based on a generalized Bayes risk is proposed in this dissertation for dynamic JDE problems. It is computationally efficient for dynamic problems where data are made available sequentially. Further, since existing performance measures for estimation or decision are effective to evaluate JDE algorithms, a joint performance measure is proposed for JDE algorithms for dynamic problems. The RJDE algorithm is demonstrated by applications to joint tracking and classification as well as joint tracking and detection in target tracking. The characteristics and performance of SPRT are characterized by two important functions—operating characteristic (OC) and average sample number (ASN). These two functions have been studied extensively under the assumption of independent and identically distributed (i.i.d.) LLR, which is too stringent for many applications. This dissertation relaxes the requirement of identical distribution. Two inductive equations governing the OC and ASN are developed. Unfortunately, they have non-unique solutions in the general case. They do have unique solutions in two special cases: (a) the LLR sequence converges in distributions and (b) the LLR sequence has periodic distributions. Further, the analysis can be readily extended to evaluate the performance of the truncated SPRT and the cumulative sum test
    corecore