2,335 research outputs found

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Unicast Barrage Relay Networks: Outage Analysis and Optimization

    Full text link
    Barrage relays networks (BRNs) are ad hoc networks built on a rapid cooperative flooding primitive as opposed to the traditional point-to-point link abstraction. Controlled barrage regions (CBRs) can be used to contain this flooding primitive for unicast and multicast, thereby enabling spatial reuse. In this paper, the behavior of individual CBRs is described as a Markov process that models the potential cooperative relay transmissions. The outage probability for a CBR is found in closed form for a given topology, and the probability takes into account fading and co-channel interference (CCI) between adjacent CBRs. Having adopted this accurate analytical framework, this paper proceeds to optimize a BRN by finding the optimal size of each CBR, the number of relays contained within each CBR, the optimal relay locations when they are constrained to lie on a straight line, and the code rate that maximizes the transport capacity.Comment: 7 pages, 4 figures, 1 table, in IEEE Military Commun. Conf. (MILCOM), 201

    Enhancing Physical Layer Security in AF Relay Assisted Multi-Carrier Wireless Transmission

    Full text link
    In this paper, we study the physical layer security (PLS) problem in the dual hop orthogonal frequency division multiplexing (OFDM) based wireless communication system. First, we consider a single user single relay system and study a joint power optimization problem at the source and relay subject to individual power constraint at the two nodes. The aim is to maximize the end to end secrecy rate with optimal power allocation over different sub-carriers. Later, we consider a more general multi-user multi-relay scenario. Under high SNR approximation for end to end secrecy rate, an optimization problem is formulated to jointly optimize power allocation at the BS, the relay selection, sub-carrier assignment to users and the power loading at each of the relaying node. The target is to maximize the overall security of the system subject to independent power budget limits at each transmitting node and the OFDMA based exclusive sub-carrier allocation constraints. A joint optimization solution is obtained through duality theory. Dual decomposition allows to exploit convex optimization techniques to find the power loading at the source and relay nodes. Further, an optimization for power loading at relaying nodes along with relay selection and sub carrier assignment for the fixed power allocation at the BS is also studied. Lastly, a sub-optimal scheme that explores joint power allocation at all transmitting nodes for the fixed subcarrier allocation and relay assignment is investigated. Finally, simulation results are presented to validate the performance of the proposed schemes.Comment: 10 pages, 7 figures, accepted in Transactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT

    The Balanced Unicast and Multicast Capacity Regions of Large Wireless Networks

    Full text link
    We consider the question of determining the scaling of the n2n^2-dimensional balanced unicast and the n2nn 2^n-dimensional balanced multicast capacity regions of a wireless network with nn nodes placed uniformly at random in a square region of area nn and communicating over Gaussian fading channels. We identify this scaling of both the balanced unicast and multicast capacity regions in terms of Θ(n)\Theta(n), out of 2n2^n total possible, cuts. These cuts only depend on the geometry of the locations of the source nodes and their destination nodes and the traffic demands between them, and thus can be readily evaluated. Our results are constructive and provide optimal (in the scaling sense) communication schemes.Comment: 37 pages, 7 figures, to appear in IEEE Transactions on Information Theor

    On Capacity Scaling in Arbitrary Wireless Networks

    Full text link
    In recent work, Ozgur, Leveque, and Tse (2007) obtained a complete scaling characterization of throughput scaling for random extended wireless networks (i.e., nn nodes are placed uniformly at random in a square region of area nn). They showed that for small path-loss exponents α∈(2,3]\alpha\in(2,3] cooperative communication is order optimal, and for large path-loss exponents α>3\alpha > 3 multi-hop communication is order optimal. However, their results (both the communication scheme and the proof technique) are strongly dependent on the regularity induced with high probability by the random node placement. In this paper, we consider the problem of characterizing the throughput scaling in extended wireless networks with arbitrary node placement. As a main result, we propose a more general novel cooperative communication scheme that works for arbitrarily placed nodes. For small path-loss exponents α∈(2,3]\alpha \in (2,3], we show that our scheme is order optimal for all node placements, and achieves exactly the same throughput scaling as in Ozgur et al. This shows that the regularity of the node placement does not affect the scaling of the achievable rates for α∈(2,3]\alpha\in (2,3]. The situation is, however, markedly different for large path-loss exponents α>3\alpha >3. We show that in this regime the scaling of the achievable per-node rates depends crucially on the regularity of the node placement. We then present a family of schemes that smoothly "interpolate" between multi-hop and cooperative communication, depending upon the level of regularity in the node placement. We establish order optimality of these schemes under adversarial node placement for α>3\alpha > 3.Comment: 38 pages, 6 figures, to appear in IEEE Transactions on Information Theor

    Ultra Reliable UAV Communication Using Altitude and Cooperation Diversity

    Full text link
    The use of unmanned aerial vehicles (UAVs) that serve as aerial base stations is expected to become predominant in the next decade. However, in order for this technology to unfold its full potential it is necessary to develop a fundamental understanding of the distinctive features of air-to-ground (A2G) links. As a contribution in this direction, this paper proposes a generic framework for the analysis and optimization of the A2G systems. In contrast to the existing literature, this framework incorporates both height-dependent path loss exponent and small-scale fading, and unifies a widely used ground-to-ground channel model with that of A2G for analysis of large-scale wireless networks. We derive analytical expressions for the optimal UAV height that minimizes the outage probability of a given A2G link. Moreover, our framework allows us to derive a height-dependent closed-form expression and a tight lower bound for the outage probability of an \textit{A2G cooperative communication} network. Our results suggest that the optimal location of the UAVs with respect to the ground nodes does not change by the inclusion of ground relays. This enables interesting insights in the deployment of future A2G networks, as the system reliability could be adjusted dynamically by adding relaying nodes without requiring changes in the position of the corresponding UAVs

    Outage Probability of Wireless Ad Hoc Networks with Cooperative Relaying

    Full text link
    In this paper, we analyze the performance of cooperative transmissions in wireless ad hoc networks with random node locations. According to a contention probability for message transmission, each source node can either transmits its own message signal or acts as a potential relay for others. Hence, each destination node can potentially receive two copies of the message signal, one from the direct link and the other from the relay link. Taking the random node locations and interference into account, we derive closed-form expressions for the outage probability with different combining schemes at the destination nodes. In particular, the outage performance of optimal combining, maximum ratio combining, and selection combining strategies are studied and quantified.Comment: 7 pages; IEEE Globecom 201
    • …
    corecore