38,383 research outputs found

    Connectionist Theory Refinement: Genetically Searching the Space of Network Topologies

    Full text link
    An algorithm that learns from a set of examples should ideally be able to exploit the available resources of (a) abundant computing power and (b) domain-specific knowledge to improve its ability to generalize. Connectionist theory-refinement systems, which use background knowledge to select a neural network's topology and initial weights, have proven to be effective at exploiting domain-specific knowledge; however, most do not exploit available computing power. This weakness occurs because they lack the ability to refine the topology of the neural networks they produce, thereby limiting generalization, especially when given impoverished domain theories. We present the REGENT algorithm which uses (a) domain-specific knowledge to help create an initial population of knowledge-based neural networks and (b) genetic operators of crossover and mutation (specifically designed for knowledge-based networks) to continually search for better network topologies. Experiments on three real-world domains indicate that our new algorithm is able to significantly increase generalization compared to a standard connectionist theory-refinement system, as well as our previous algorithm for growing knowledge-based networks.Comment: See http://www.jair.org/ for any accompanying file

    Functional Maps Representation on Product Manifolds

    Get PDF
    We consider the tasks of representing, analyzing and manipulating maps between shapes. We model maps as densities over the product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable using the language of signal processing on manifolds. Being a manifold itself, the product space endows the set of maps with a geometry of its own, which we exploit to define map operations in the spectral domain; we also derive relationships with other existing representations (soft maps and functional maps). To apply these ideas in practice, we discretize product manifolds and their Laplace--Beltrami operators, and we introduce localized spectral analysis of the product manifold as a novel tool for map processing. Our framework applies to maps defined between and across 2D and 3D shapes without requiring special adjustment, and it can be implemented efficiently with simple operations on sparse matrices.Comment: Accepted to Computer Graphics Foru

    Expert systems and finite element structural analysis - a review

    Get PDF
    Finite element analysis of many engineering systems is practised more as an art than as a science . It involves high level expertise (analytical as well as heuristic) regarding problem modelling (e .g. problem specification,13; choosing the appropriate type of elements etc .), optical mesh design for achieving the specified accuracy (e .g . initial mesh selection, adaptive mesh refinement), selection of the appropriate type of analysis and solution13; routines and, finally, diagnosis of the finite element solutions . Very often such expertise is highly dispersed and is not available at a single place with a single expert. The design of an expert system, such that the necessary expertise is available to a novice to perform the same job even in the absence of trained experts, becomes an attractive proposition. 13; In this paper, the areas of finite element structural analysis which require experience and decision-making capabilities are explored . A simple expert system, with a feasible knowledge base for problem modelling, optimal mesh design, type of analysis and solution routines, and diagnosis, is outlined. Several efforts in these directions, reported in the open literature, are also reviewed in this paper
    corecore