3,894 research outputs found

    Asymmetric Dual-Arm Task Execution using an Extended Relative Jacobian

    Full text link
    Coordinated dual-arm manipulation tasks can be broadly characterized as possessing absolute and relative motion components. Relative motion tasks, in particular, are inherently redundant in the way they can be distributed between end-effectors. In this work, we analyse cooperative manipulation in terms of the asymmetric resolution of relative motion tasks. We discuss how existing approaches enable the asymmetric execution of a relative motion task, and show how an asymmetric relative motion space can be defined. We leverage this result to propose an extended relative Jacobian to model the cooperative system, which allows a user to set a concrete degree of asymmetry in the task execution. This is achieved without the need for prescribing an absolute motion target. Instead, the absolute motion remains available as a functional redundancy to the system. We illustrate the properties of our proposed Jacobian through numerical simulations of a novel differential Inverse Kinematics algorithm.Comment: Accepted for presentation at ISRR19. 16 Page

    Autonomous 3D Exploration of Large Structures Using an UAV Equipped with a 2D LIDAR

    Get PDF
    This paper addressed the challenge of exploring large, unknown, and unstructured industrial environments with an unmanned aerial vehicle (UAV). The resulting system combined well-known components and techniques with a new manoeuvre to use a low-cost 2D laser to measure a 3D structure. Our approach combined frontier-based exploration, the Lazy Theta* path planner, and a flyby sampling manoeuvre to create a 3D map of large scenarios. One of the novelties of our system is that all the algorithms relied on the multi-resolution of the octomap for the world representation. We used a Hardware-in-the-Loop (HitL) simulation environment to collect accurate measurements of the capability of the open-source system to run online and on-board the UAV in real-time. Our approach is compared to different reference heuristics under this simulation environment showing better performance in regards to the amount of explored space. With the proposed approach, the UAV is able to explore 93% of the search space under 30 min, generating a path without repetition that adjusts to the occupied space covering indoor locations, irregular structures, and suspended obstaclesUnión Europea Marie Sklodowska-Curie 64215Unión Europea MULTIDRONE (H2020-ICT-731667)Uniión Europea HYFLIERS (H2020-ICT-779411

    Geometry-aware Manipulability Learning, Tracking and Transfer

    Full text link
    Body posture influences human and robots performance in manipulation tasks, as appropriate poses facilitate motion or force exertion along different axes. In robotics, manipulability ellipsoids arise as a powerful descriptor to analyze, control and design the robot dexterity as a function of the articulatory joint configuration. This descriptor can be designed according to different task requirements, such as tracking a desired position or apply a specific force. In this context, this paper presents a novel \emph{manipulability transfer} framework, a method that allows robots to learn and reproduce manipulability ellipsoids from expert demonstrations. The proposed learning scheme is built on a tensor-based formulation of a Gaussian mixture model that takes into account that manipulability ellipsoids lie on the manifold of symmetric positive definite matrices. Learning is coupled with a geometry-aware tracking controller allowing robots to follow a desired profile of manipulability ellipsoids. Extensive evaluations in simulation with redundant manipulators, a robotic hand and humanoids agents, as well as an experiment with two real dual-arm systems validate the feasibility of the approach.Comment: Accepted for publication in the Intl. Journal of Robotics Research (IJRR). Website: https://sites.google.com/view/manipulability. Code: https://github.com/NoemieJaquier/Manipulability. 24 pages, 20 figures, 3 tables, 4 appendice

    AI based Robot Safe Learning and Control

    Get PDF
    Introduction This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control strategies include adaptive tracking control for robots with model uncertainties, compliance control in uncertain environments, obstacle avoidance in dynamic workspace. The idea for this book on solving safe control of robot arms was conceived during the industrial applications and the research discussion in the laboratory. Most of the materials in this book are derived from the authors’ papers published in journals, such as IEEE Transactions on Industrial Electronics, neurocomputing, etc. This book can be used as a reference book for researcher and designer of the robotic systems and AI based controllers, and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities

    Modification of Gesture-Determined-Dynamic Function with Consideration of Margins for Motion Planning of Humanoid Robots

    Full text link
    The gesture-determined-dynamic function (GDDF) offers an effective way to handle the control problems of humanoid robots. Specifically, GDDF is utilized to constrain the movements of dual arms of humanoid robots and steer specific gestures to conduct demanding tasks under certain conditions. However, there is still a deficiency in this scheme. Through experiments, we found that the joints of the dual arms, which can be regarded as the redundant manipulators, could exceed their limits slightly at the joint angle level. The performance straightly depends on the parameters designed beforehand for the GDDF, which causes a lack of adaptability to the practical applications of this method. In this paper, a modified scheme of GDDF with consideration of margins (MGDDF) is proposed. This MGDDF scheme is based on quadratic programming (QP) framework, which is widely applied to solving the redundancy resolution problems of robot arms. Moreover, three margins are introduced in the proposed MGDDF scheme to avoid joint limits. With consideration of these margins, the joints of manipulators of the humanoid robots will not exceed their limits, and the potential damages which might be caused by exceeding limits will be completely avoided. Computer simulations conducted on MATLAB further verify the feasibility and superiority of the proposed MGDDF scheme

    Efficient Multi-Robot Coverage of a Known Environment

    Full text link
    This paper addresses the complete area coverage problem of a known environment by multiple-robots. Complete area coverage is the problem of moving an end-effector over all available space while avoiding existing obstacles. In such tasks, using multiple robots can increase the efficiency of the area coverage in terms of minimizing the operational time and increase the robustness in the face of robot attrition. Unfortunately, the problem of finding an optimal solution for such an area coverage problem with multiple robots is known to be NP-complete. In this paper we present two approximation heuristics for solving the multi-robot coverage problem. The first solution presented is a direct extension of an efficient single robot area coverage algorithm, based on an exact cellular decomposition. The second algorithm is a greedy approach that divides the area into equal regions and applies an efficient single-robot coverage algorithm to each region. We present experimental results for two algorithms. Results indicate that our approaches provide good coverage distribution between robots and minimize the workload per robot, meanwhile ensuring complete coverage of the area.Comment: In proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 201

    Shared control for natural motion and safety in hands-on robotic surgery

    Get PDF
    Hands-on robotic surgery is where the surgeon controls the tool's motion by applying forces and torques to the robot holding the tool, allowing the robot-environment interaction to be felt though the tool itself. To further improve results, shared control strategies are used to combine the strengths of the surgeon with those of the robot. One such strategy is active constraints, which prevent motion into regions deemed unsafe or unnecessary. While research in active constraints on rigid anatomy has been well-established, limited work on dynamic active constraints (DACs) for deformable soft tissue has been performed, particularly on strategies which handle multiple sensing modalities. In addition, attaching the tool to the robot imposes the end effector dynamics onto the surgeon, reducing dexterity and increasing fatigue. Current control policies on these systems only compensate for gravity, ignoring other dynamic effects. This thesis presents several research contributions to shared control in hands-on robotic surgery, which create a more natural motion for the surgeon and expand the usage of DACs to point clouds. A novel null-space based optimization technique has been developed which minimizes the end effector friction, mass, and inertia of redundant robots, creating a more natural motion, one which is closer to the feeling of the tool unattached to the robot. By operating in the null-space, the surgeon is left in full control of the procedure. A novel DACs approach has also been developed, which operates on point clouds. This allows its application to various sensing technologies, such as 3D cameras or CT scans and, therefore, various surgeries. Experimental validation in point-to-point motion trials and a virtual reality ultrasound scenario demonstrate a reduction in work when maneuvering the tool and improvements in accuracy and speed when performing virtual ultrasound scans. Overall, the results suggest that these techniques could increase the ease of use for the surgeon and improve patient safety.Open Acces
    corecore