2,175 research outputs found

    Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks

    Full text link
    Mobile-Edge Computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this article, a MEC enabled multi-cell wireless network is considered where each Base Station (BS) is equipped with a MEC server that can assist mobile users in executing computation-intensive tasks via task offloading. The problem of Joint Task Offloading and Resource Allocation (JTORA) is studied in order to maximize the users' task offloading gains, which is measured by the reduction in task completion time and energy consumption. The considered problem is formulated as a Mixed Integer Non-linear Program (MINLP) that involves jointly optimizing the task offloading decision, uplink transmission power of mobile users, and computing resource allocation at the MEC servers. Due to the NP-hardness of this problem, solving for optimal solution is difficult and impractical for a large-scale network. To overcome this drawback, our approach is to decompose the original problem into (i) a Resource Allocation (RA) problem with fixed task offloading decision and (ii) a Task Offloading (TO) problem that optimizes the optimal-value function corresponding to the RA problem. We address the RA problem using convex and quasi-convex optimization techniques, and propose a novel heuristic algorithm to the TO problem that achieves a suboptimal solution in polynomial time. Numerical simulation results show that our algorithm performs closely to the optimal solution and that it significantly improves the users' offloading utility over traditional approaches

    Applications of Deep Reinforcement Learning in Communications and Networking: A Survey

    Full text link
    This paper presents a comprehensive literature review on applications of deep reinforcement learning in communications and networking. Modern networks, e.g., Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, deep reinforcement learning, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of deep reinforcement learning from fundamental concepts to advanced models. Then, we review deep reinforcement learning approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks such as 5G and beyond. Furthermore, we present applications of deep reinforcement learning for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying deep reinforcement learning.Comment: 37 pages, 13 figures, 6 tables, 174 reference paper

    Computation Rate Maximization in UAV-Enabled Wireless Powered Mobile-Edge Computing Systems

    Full text link
    Mobile edge computing (MEC) and wireless power transfer (WPT) are two promising techniques to enhance the computation capability and to prolong the operational time of low-power wireless devices that are ubiquitous in Internet of Things. However, the computation performance and the harvested energy are significantly impacted by the severe propagation loss. In order to address this issue, an unmanned aerial vehicle (UAV)-enabled MEC wireless powered system is studied in this paper. The computation rate maximization problems in a UAV-enabled MEC wireless powered system are investigated under both partial and binary computation offloading modes, subject to the energy harvesting causal constraint and the UAV's speed constraint. These problems are non-convex and challenging to solve. A two-stage algorithm and a three-stage alternative algorithm are respectively proposed for solving the formulated problems. The closed-form expressions for the optimal central processing unit frequencies, user offloading time, and user transmit power are derived. The optimal selection scheme on whether users choose to locally compute or offload computation tasks is proposed for the binary computation offloading mode. Simulation results show that our proposed resource allocation schemes outperforms other benchmark schemes. The results also demonstrate that the proposed schemes converge fast and have low computational complexity.Comment: This paper has been accepted by IEEE JSA

    A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications

    Full text link
    As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures which bring network functions and contents to the network edge are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks including definition, architecture and advantages. Next, a comprehensive survey of issues on computing, caching and communication techniques at the network edge is presented respectively. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks such as cloud technology, SDN/NFV and smart devices are discussed. Finally, open research challenges and future directions are presented as well

    Delay-aware Resource Allocation in Fog-assisted IoT Networks Through Reinforcement Learning

    Full text link
    Fog nodes in the vicinity of IoT devices are promising to provision low latency services by offloading tasks from IoT devices to them. Mobile IoT is composed by mobile IoT devices such as vehicles, wearable devices and smartphones. Owing to the time-varying channel conditions, traffic loads and computing loads, it is challenging to improve the quality of service (QoS) of mobile IoT devices. As task delay consists of both the transmission delay and computing delay, we investigate the resource allocation (i.e., including both radio resource and computation resource) in both the wireless channel and fog node to minimize the delay of all tasks while their QoS constraints are satisfied. We formulate the resource allocation problem into an integer non-linear problem, where both the radio resource and computation resource are taken into account. As IoT tasks are dynamic, the resource allocation for different tasks are coupled with each other and the future information is impractical to be obtained. Therefore, we design an on-line reinforcement learning algorithm to make the sub-optimal decision in real time based on the system's experience replay data. The performance of the designed algorithm has been demonstrated by extensive simulation results

    Decentralized Computation Offloading and Resource Allocation in Heterogeneous Networks with Mobile Edge Computing

    Full text link
    We consider a heterogeneous network with mobile edge computing, where a user can offload its computation to one among multiple servers. In particular, we minimize the system-wide computation overhead by jointly optimizing the individual computation decisions, transmit power of the users, and computation resource at the servers. The crux of the problem lies in the combinatorial nature of multi-user offloading decisions, the complexity of the optimization objective, and the existence of inter-cell interference. Then, we decompose the underlying problem into two subproblems: i) the offloading decision, which includes two phases of user association and subchannel assignment, and ii) joint resource allocation, which can be further decomposed into the problems of transmit power and computation resource allocation. To enable distributed computation offloading, we sequentially apply a many-to-one matching game for user association and a one-to-one matching game for subchannel assignment. Moreover, the transmit power of offloading users is found using a bisection method with approximate inter-cell interference, and the computation resources allocated to offloading users is achieved via the duality approach. The proposed algorithm is shown to converge and is stable. Finally, we provide simulations to validate the performance of the proposed algorithm as well as comparisons with the existing frameworks.Comment: Submitted to IEEE Journa

    TARCO: Two-Stage Auction for D2D Relay Aided Computation Resource Allocation in Hetnet

    Full text link
    In heterogeneous cellular network, task scheduling for computation offloading is one of the biggest challenges. Most works focus on alleviating heavy burden of macro base stations by moving the computation tasks on macro-cell user equipment (MUE) to remote cloud or small-cell base stations. But the selfishness of network users is seldom considered. Motivated by the cloud edge computing, this paper provides incentive for task transfer from macro cell users to small cell base stations. The proposed incentive scheme utilizes small cell user equipment to provide relay service. The problem of computation offloading is modelled as a two-stage auction, in which the remote MUEs with common social character can form a group and then buy the computation resource of small-cell base stations with the relay of small cell user equipment. A two-stage auction scheme named TARCO is contributed to maximize utilities for both sellers and buyers in the network. The truthful, individual rationality and budget balance of the TARCO are also proved in this paper. In addition, two algorithms are proposed to further refine TARCO on the social welfare of the network. Extensive simulation results demonstrate that, TARCO is better than random algorithm by about 104.90% in terms of average utility of MUEs, while the performance of TARCO is further improved up to 28.75% and 17.06% by the proposed two algorithms, respectively.Comment: 22 pages, 9 figures, Working paper, SUBMITTED to IEEE TRANSACTIONS ON SERVICES COMPUTIN

    Information-Centric Wireless Networks with Mobile Edge Computing

    Full text link
    In order to better accommodate the dramatically increasing demand for data caching and computing services, storage and computation capabilities should be endowed to some of the intermediate nodes within the network. In this paper, we design a novel virtualized heterogeneous networks framework aiming at enabling content caching and computing. With the virtualization of the whole system, the communication, computing and caching resources can be shared among all users associated with different virtual service providers. We formulate the virtual resource allocation strategy as a joint optimization problem, where the gains of not only virtualization but also caching and computing are taken into consideration in the proposed architecture. In addition, a distributed algorithm based on alternating direction method of multipliers is adopted to solve the formulated problem, in order to reduce the computational complexity and signaling overhead. Finally, extensive simulations are presented to show the effectiveness of the proposed scheme under different system parameters

    Hierarchical Fog-Cloud Computing for IoT Systems: A Computation Offloading Game

    Full text link
    Fog computing, which provides low-latency computing services at the network edge, is an enabler for the emerging Internet of Things (IoT) systems. In this paper, we study the allocation of fog computing resources to the IoT users in a hierarchical computing paradigm including fog and remote cloud computing services. We formulate a computation offloading game to model the competition between IoT users and allocate the limited processing power of fog nodes efficiently. Each user aims to maximize its own quality of experience (QoE), which reflects its satisfaction of using computing services in terms of the reduction in computation energy and delay. Utilizing a potential game approach, we prove the existence of a pure Nash equilibrium and provide an upper bound for the price of anarchy. Since the time complexity to reach the equilibrium increases exponentially in the number of users, we further propose a near-optimal resource allocation mechanism and prove that in a system with NN IoT users, it can achieve an ϵ\epsilon-Nash equilibrium in O(N/ϵ)O(N/\epsilon) time. Through numerical studies, we evaluate the users' QoE as well as the equilibrium efficiency. Our results reveal that by utilizing the proposed mechanism, more users benefit from computing services in comparison to an existing offloading mechanism. We further show that our proposed mechanism significantly reduces the computation delay and enables low-latency fog computing services for delay-sensitive IoT applications

    Optimized Computation Offloading Performance in Virtual Edge Computing Systems via Deep Reinforcement Learning

    Full text link
    To improve the quality of computation experience for mobile devices, mobile-edge computing (MEC) is a promising paradigm by providing computing capabilities in close proximity within a sliced radio access network (RAN), which supports both traditional communication and MEC services. Nevertheless, the design of computation offloading policies for a virtual MEC system remains challenging. Specifically, whether to execute a computation task at the mobile device or to offload it for MEC server execution should adapt to the time-varying network dynamics. In this paper, we consider MEC for a representative mobile user in an ultra-dense sliced RAN, where multiple base stations (BSs) are available to be selected for computation offloading. The problem of solving an optimal computation offloading policy is modelled as a Markov decision process, where our objective is to maximize the long-term utility performance whereby an offloading decision is made based on the task queue state, the energy queue state as well as the channel qualities between MU and BSs. To break the curse of high dimensionality in state space, we first propose a double deep Q-network (DQN) based strategic computation offloading algorithm to learn the optimal policy without knowing a priori knowledge of network dynamics. Then motivated by the additive structure of the utility function, a Q-function decomposition technique is combined with the double DQN, which leads to novel learning algorithm for the solving of stochastic computation offloading. Numerical experiments show that our proposed learning algorithms achieve a significant improvement in computation offloading performance compared with the baseline policies
    • …
    corecore