2,177 research outputs found

    How the structure of precedence constraints may change the complexity class of scheduling problems

    Full text link
    This survey aims at demonstrating that the structure of precedence constraints plays a tremendous role on the complexity of scheduling problems. Indeed many problems can be NP-hard when considering general precedence constraints, while they become polynomially solvable for particular precedence constraints. We also show that there still are many very exciting challenges in this research area

    Fast divide-and-conquer algorithms for preemptive scheduling problems with controllable processing times – A polymatroid optimization approach

    Get PDF
    We consider a variety of preemptive scheduling problems with controllable processing times on a single machine and on identical/uniform parallel machines, where the objective is to minimize the total compression cost. In this paper, we propose fast divide-and-conquer algorithms for these scheduling problems. Our approach is based on the observation that each scheduling problem we discuss can be formulated as a polymatroid optimization problem. We develop a novel divide-and-conquer technique for the polymatroid optimization problem and then apply it to each scheduling problem. We show that each scheduling problem can be solved in O(Tfeas(n) log n) time by using our divide-and-conquer technique, where n is the number of jobs and Tfeas(n) denotes the time complexity of the corresponding feasible scheduling problem with n jobs. This approach yields faster algorithms for most of the scheduling problems discussed in this paper

    Throughput Maximization in Multiprocessor Speed-Scaling

    Full text link
    We are given a set of nn jobs that have to be executed on a set of mm speed-scalable machines that can vary their speeds dynamically using the energy model introduced in [Yao et al., FOCS'95]. Every job jj is characterized by its release date rjr_j, its deadline djd_j, its processing volume pi,jp_{i,j} if jj is executed on machine ii and its weight wjw_j. We are also given a budget of energy EE and our objective is to maximize the weighted throughput, i.e. the total weight of jobs that are completed between their respective release dates and deadlines. We propose a polynomial-time approximation algorithm where the preemption of the jobs is allowed but not their migration. Our algorithm uses a primal-dual approach on a linearized version of a convex program with linear constraints. Furthermore, we present two optimal algorithms for the non-preemptive case where the number of machines is bounded by a fixed constant. More specifically, we consider: {\em (a)} the case of identical processing volumes, i.e. pi,j=pp_{i,j}=p for every ii and jj, for which we present a polynomial-time algorithm for the unweighted version, which becomes a pseudopolynomial-time algorithm for the weighted throughput version, and {\em (b)} the case of agreeable instances, i.e. for which ri≤rjr_i \le r_j if and only if di≤djd_i \le d_j, for which we present a pseudopolynomial-time algorithm. Both algorithms are based on a discretization of the problem and the use of dynamic programming

    Competitive-Ratio Approximation Schemes for Minimizing the Makespan in the Online-List Model

    Full text link
    We consider online scheduling on multiple machines for jobs arriving one-by-one with the objective of minimizing the makespan. For any number of identical parallel or uniformly related machines, we provide a competitive-ratio approximation scheme that computes an online algorithm whose competitive ratio is arbitrarily close to the best possible competitive ratio. We also determine this value up to any desired accuracy. This is the first application of competitive-ratio approximation schemes in the online-list model. The result proves the applicability of the concept in different online models. We expect that it fosters further research on other online problems

    Preemptive scheduling on uniform parallel machines with controllable job processing times

    Get PDF
    In this paper, we provide a unified approach to solving preemptive scheduling problems with uniform parallel machines and controllable processing times. We demonstrate that a single criterion problem of minimizing total compression cost subject to the constraint that all due dates should be met can be formulated in terms of maximizing a linear function over a generalized polymatroid. This justifies applicability of the greedy approach and allows us to develop fast algorithms for solving the problem with arbitrary release and due dates as well as its special case with zero release dates and a common due date. For the bicriteria counterpart of the latter problem we develop an efficient algorithm that constructs the trade-off curve for minimizing the compression cost and the makespan

    Algorithms for Hierarchical and Semi-Partitioned Parallel Scheduling

    Get PDF
    We propose a model for scheduling jobs in a parallel machine setting that takes into account the cost of migrations by assuming that the processing time of a job may depend on the specific set of machines among which the job is migrated. For the makespan minimization objective, the model generalizes classical scheduling problems such as unrelated parallel machine scheduling, as well as novel ones such as semi-partitioned and clustered scheduling. In the case of a hierarchical family of machines, we derive a compact integer linear programming formulation of the problem and leverage its fractional relaxation to obtain a polynomial-time 2-approximation algorithm. Extensions that incorporate memory capacity constraints are also discussed

    Better Unrelated Machine Scheduling for Weighted Completion Time via Random Offsets from Non-Uniform Distributions

    Full text link
    In this paper we consider the classic scheduling problem of minimizing total weighted completion time on unrelated machines when jobs have release times, i.e, R∣rij∣∑jwjCjR | r_{ij} | \sum_j w_j C_j using the three-field notation. For this problem, a 2-approximation is known based on a novel convex programming (J. ACM 2001 by Skutella). It has been a long standing open problem if one can improve upon this 2-approximation (Open Problem 8 in J. of Sched. 1999 by Schuurman and Woeginger). We answer this question in the affirmative by giving a 1.8786-approximation. We achieve this via a surprisingly simple linear programming, but a novel rounding algorithm and analysis. A key ingredient of our algorithm is the use of random offsets sampled from non-uniform distributions. We also consider the preemptive version of the problem, i.e, R∣rij,pmtn∣∑jwjCjR | r_{ij},pmtn | \sum_j w_j C_j. We again use the idea of sampling offsets from non-uniform distributions to give the first better than 2-approximation for this problem. This improvement also requires use of a configuration LP with variables for each job's complete schedules along with more careful analysis. For both non-preemptive and preemptive versions, we break the approximation barrier of 2 for the first time.Comment: 24 pages. To apper in FOCS 201
    • …
    corecore