1,186 research outputs found

    Optimal Power Control and Scheduling under Hard Deadline Constraints for Continuous Fading Channels

    Full text link
    We consider a joint scheduling-and-power-allocation problem of a downlink cellular system. The system consists of two groups of users: real-time (RT) and non-real-time (NRT) users. Given an average power constraint on the base station, the problem is to find an algorithm that satisfies the RT hard deadline constraint and NRT queue stability constraint. We propose a sum-rate-maximizing algorithm that satisfies these constraints. We also show, through simulations, that the proposed algorithm has an average complexity that is close-to-linear in the number of RT users. The power allocation policy in the proposed algorithm has a closed-form expression for the two groups of users. However, interestingly, the power policy of the RT users differ in structure from that of the NRT users. We also show the superiority of the proposed algorithms over existing approaches using extensive simulations.Comment: Submitted to Asilomar 2017. arXiv admin note: text overlap with arXiv:1612.0832

    Delay Constrained Scheduling over Fading Channels: Optimal Policies for Monomial Energy-Cost Functions

    Full text link
    A point-to-point discrete-time scheduling problem of transmitting BB information bits within TT hard delay deadline slots is considered assuming that the underlying energy-bit cost function is a convex monomial. The scheduling objective is to minimize the expected energy expenditure while satisfying the deadline constraint based on information about the unserved bits, channel state/statistics, and the remaining time slots to the deadline. At each time slot, the scheduling decision is made without knowledge of future channel state, and thus there is a tension between serving many bits when the current channel is good versus leaving too many bits for the deadline. Under the assumption that no other packet is scheduled concurrently and no outage is allowed, we derive the optimal scheduling policy. Furthermore, we also investigate the dual problem of maximizing the number of transmitted bits over TT time slots when subject to an energy constraint.Comment: submitted to the IEEE ICC 200

    Optimal Energy Allocation For Delay-Constrained Traffic Over Fading Multiple Access Channels

    Full text link
    In this paper, we consider a multiple-access fading channel where NN users transmit to a single base station (BS) within a limited number of time slots. We assume that each user has a fixed amount of energy available to be consumed over the transmission window. We derive the optimal energy allocation policy for each user that maximizes the total system throughput under two different assumptions on the channel state information. First, we consider the offline allocation problem where the channel states are known a priori before transmission. We solve a convex optimization problem to maximize the sum-throughput under energy and delay constraints. Next, we consider the online allocation problem, where the channels are causally known to the BS and obtain the optimal energy allocation via dynamic programming when the number of users is small. We also develop a suboptimal resource allocation algorithm whose performance is close to the optimal one. Numerical results are presented showing the superiority of the proposed algorithms over baseline algorithms in various scenarios.Comment: IEEE Global Communications Conference: Wireless Communications (Globecom2016 WC

    Delay-Optimal Buffer-Aware Probabilistic Scheduling with Adaptive Transmission

    Full text link
    Cross-layer scheduling is a promising way to improve Quality of Service (QoS) given a power constraint. In this paper, we investigate the system with random data arrival and adaptive transmission. Probabilistic scheduling strategies aware of the buffer state are applied to generalize conventional deterministic scheduling. Based on this, the average delay and power consumption are analysed by Markov reward process. The optimal delay-power tradeoff curve is the Pareto frontier of the feasible delay-power region. It is proved that the optimal delay-power tradeoff is piecewise-linear, whose vertices are obtained by deterministic strategies. Moreover, the corresponding strategies of the optimal tradeoff curve are threshold-based, hence can be obtained by a proposed effective algorithm. On the other hand, we formulate a linear programming to minimize the average delay given a fixed power constraint. By varying the power constraint, the optimal delay-power tradeoff curve can also be obtained. It is demonstrated that the algorithm result and the optimization result match each other, and are further validated by Monte-Carlo simulation.Comment: 6 pages, 4 figures, accepted by IEEE ICCC 201

    Energy-Efficient Transmission Scheduling with Strict Underflow Constraints

    Full text link
    We consider a single source transmitting data to one or more receivers/users over a shared wireless channel. Due to random fading, the wireless channel conditions vary with time and from user to user. Each user has a buffer to store received packets before they are drained. At each time step, the source determines how much power to use for transmission to each user. The source's objective is to allocate power in a manner that minimizes an expected cost measure, while satisfying strict buffer underflow constraints and a total power constraint in each slot. The expected cost measure is composed of costs associated with power consumption from transmission and packet holding costs. The primary application motivating this problem is wireless media streaming. For this application, the buffer underflow constraints prevent the user buffers from emptying, so as to maintain playout quality. In the case of a single user with linear power-rate curves, we show that a modified base-stock policy is optimal under the finite horizon, infinite horizon discounted, and infinite horizon average expected cost criteria. For a single user with piecewise-linear convex power-rate curves, we show that a finite generalized base-stock policy is optimal under all three expected cost criteria. We also present the sequences of critical numbers that complete the characterization of the optimal control laws in each of these cases when some additional technical conditions are satisfied. We then analyze the structure of the optimal policy for the case of two users. We conclude with a discussion of methods to identify implementable near-optimal policies for the most general case of M users.Comment: 109 pages, 11 pdf figures, template.tex is main file. We have significantly revised the paper from version 1. Additions include the case of a single receiver with piecewise-linear convex power-rate curves, the case of two receivers, and the infinite horizon average expected cost proble
    • …
    corecore