1,583 research outputs found

    Optimal Joint Power and Subcarrier Allocation for Full-Duplex Multicarrier Non-Orthogonal Multiple Access Systems

    Full text link
    In this paper, we investigate resource allocation algorithm design for multicarrier non-orthogonal multiple access (MC-NOMA) systems employing a full-duplex (FD) base station (BS) for serving multiple half-duplex (HD) downlink (DL) and uplink (UL) users simultaneously. The proposed algorithm is obtained from the solution of a non-convex optimization problem for the maximization of the weighted sum system throughput. We apply monotonic optimization to develop an optimal joint power and subcarrier allocation policy. The optimal resource allocation policy serves as a system performance benchmark due to its high computational complexity. Furthermore, a suboptimal iterative scheme based on successive convex approximation is proposed to strike a balance between computational complexity and optimality. Our simulation results reveal that the proposed suboptimal algorithm achieves a close-to-optimal performance. Besides, FD MC-NOMA systems employing the proposed resource allocation algorithms provide a substantial system throughput improvement compared to conventional HD multicarrier orthogonal multiple access (MC-OMA) systems and other baseline schemes. Also, our results unveil that the proposed FD MC-NOMA systems achieve a fairer resource allocation compared to traditional HD MC-OMA systems.Comment: Submitted for possible journal publicatio

    Robust and Secure Resource Allocation for Full-Duplex MISO Multicarrier NOMA Systems

    Full text link
    In this paper, we study the resource allocation algorithm design for multiple-input single-output (MISO) multicarrier non-orthogonal multiple access (MC-NOMA) systems, in which a full-duplex base station serves multiple half-duplex uplink and downlink users on the same subcarrier simultaneously. The resource allocation is optimized for maximization of the weighted system throughput while the information leakage is constrained and artificial noise is injected to guarantee secure communication in the presence of multiple potential eavesdroppers. To this end, we formulate a robust non-convex optimization problem taking into account the imperfect channel state information (CSI) of the eavesdropping channels and the quality-of-service (QoS) requirements of the legitimate users. Despite the non-convexity of the optimization problem, we solve it optimally by applying monotonic optimization which yields the optimal beamforming, artificial noise design, subcarrier allocation, and power allocation policy. The optimal resource allocation policy serves as a performance benchmark since the corresponding monotonic optimization based algorithm entails a high computational complexity. Hence, we also develop a low-complexity suboptimal resource allocation algorithm which converges to a locally optimal solution. Our simulation results reveal that the performance of the suboptimal algorithm closely approaches that of the optimal algorithm. Besides, the proposed optimal MISO NOMA system can not only ensure downlink and uplink communication security simultaneously but also provides a significant system secrecy rate improvement compared to traditional MISO orthogonal multiple access (OMA) systems and two other baseline schemes.Comment: Submitted for possible publicatio

    Resource Optimization and Power Allocation in In-band Full Duplex (IBFD)-Enabled Non-Orthogonal Multiple Access Networks

    Full text link
    In this paper, the problem of uplink (UL) and downlink (DL) resource optimization, mode selection and power allocation is studied for wireless cellular networks under the assumption of in-band full duplex (IBFD) base stations, non-orthogonal multiple access (NOMA) operation, and queue stability constraints. The problem is formulated as a network utility maximization problem for which a Lyapunov framework is used to decompose it into two disjoint subproblems of auxiliary variable selection and rate maximization. The latter is further decoupled into a user association and mode selection (UAMS) problem and a UL/DL power optimization (UDPO) problem that are solved concurrently. The UAMS problem is modeled as a many-to-one matching problem to associate users to small cell base stations (SBSs) and select transmission mode (half/full-duplex and orthogonal/non-orthogonal multiple access), and an algorithm is proposed to solve the problem converging to a pairwise stable matching. Subsequently, the UDPO problem is formulated as a sequence of convex problems and is solved using the concave-convex procedure. Simulation results demonstrate the effectiveness of the proposed scheme to allocate UL and DL power levels after dynamically selecting the operating mode and the served users, under different traffic intensity conditions, network density, and self-interference cancellation capability. The proposed scheme is shown to achieve up to 63% and 73% of gains in UL and DL packet throughput, and 21% and 17% in UL and DL cell edge throughput, respectively, compared to existing baseline schemes.Comment: 15 pages, 10 figures, accepted in the JSAC SI on non-orthogonal multiple access for 5G system

    Non-Orthogonal Multiple Access: Common Myths and Critical Questions

    Full text link
    Non-orthogonal multiple access (NOMA) has received tremendous attention for the design of radio access techniques for fifth generation (5G) wireless networks and beyond. The basic concept behind NOMA is to serve more than one user in the same resource block, e.g., a time slot, subcarrier, spreading code, or space. With this, NOMA promotes massive connectivity, lowers latency, improves user fairness and spectral efficiency, and increases reliability compared to orthogonal multiple access (OMA) techniques. While NOMA has gained significant attention from the communications community, it has also been subject to several widespread misunderstandings, such as NOMA is based on allocating higher power to users with worse channel conditions. As such, cell-edge users receive more power in NOMA and due to this biased power allocation toward cell-edge users inter-cell interference is more severe in NOMA compared to OMA. NOMA also compromises security for spectral efficiency.``\textit{NOMA is based on allocating higher power to users with worse channel conditions. As such, cell-edge users receive more power in NOMA and due to this biased power allocation toward cell-edge users inter-cell interference is more severe in NOMA compared to OMA. NOMA also compromises security for spectral efficiency.}'' The above statements are actually false, and this paper aims at identifying such common myths about NOMA and clarifying why they are not true. We also pose critical questions that are important for the effective adoption of NOMA in 5G and beyond and identify promising research directions for NOMA, which will require intense investigation in the future.Comment: To appear in the IEEE Wireless Communication

    Resource Allocation in Full-Duplex Mobile-Edge Computing Systems with NOMA and Energy Harvesting

    Full text link
    This paper considers a full-duplex (FD) mobile-edge computing (MEC) system with non-orthogonal multiple access (NOMA) and energy harvesting (EH), where one group of users simultaneously offload task data to the base station (BS) via NOMA and the BS simultaneously receive data and broadcast energy to other group of users with FD. We aim at minimizing the total energy consumption of the system via power control, time scheduling and computation capacity allocation. To solve this nonconvex problem, we first transform it into an equivalent problem with less variables. The equivalent problem is shown to be convex in each vector with the other two vectors fixed, which allows us to design an iterative algorithm with low complexity. Simulation results show that the proposed algorithm achieves better performance than the conventional methods

    Interference Management in NOMA-based Fog-Radio Access Networks via Joint Scheduling and Power Adaptation

    Full text link
    Non-Orthogonal Multiple Access (NOMA) and Fog Radio Access Networks (FRAN) are promising candidates within the 5G and beyond systems. This work examines the benefit of adopting NOMA in an FRAN architecture with constrained capacity fronthaul. The paper proposes methods for optimizing joint scheduling and power adaptation in the downlink of a NOMA-based FRAN with multiple resource blocks (RB). We consider a mixed-integer optimization problem which maximizes a network-wide rate-based utility function subject to fronthaul-capacity constraints, so as to determine i) the user-to-RB assignment, ii) the allocated power to each RB, and iii) the power split levels of the NOMA users in each RB. The paper proposes a feasible decoupled solution for such non-convex optimization problem using a three-step hybrid centralized/distributed approach. The proposed solution complies with FRAN operation that aims to partially shift the network control to the FAPs, so as to overcome delays due to fronthaul rate constraints. The paper proposes and compares two distinct methods for solving the assignment problem, namely the Hungarian method, and the Multiple Choice Knapsack method. The power allocation and the NOMA power split optimization, on the other hand, are solved using the alternating direction method of multipliers (ADMM). Simulations results illustrate the advantages of the proposed methods compared to different baseline schemes including the conventional Orthogonal Multiple Access (OMA), for different utility functions and different network environments

    Non-Orthogonal Multiple Access for mmWave Drone Networks with Limited Feedback

    Full text link
    Unmanned aerial vehicle (UAV) base stations (BSs) can be a promising solution to provide connectivity and quality of service (QoS) guarantees during temporary events and after disasters. In this paper, we consider a scenario where UAV-BSs are serving large number of mobile users in a hot spot area (e.g., in a stadium). We introduce non-orthogonal multiple access (NOMA) transmission at UAV-BSs to serve more users simultaneously considering user distances as the available feedback for user ordering during NOMA formulation. With millimeter-wave (mmWave) transmission and multi-antenna techniques, we assume UAV-BS generates directional beams and multiple users are served simultaneously within the same beam. However, due to the limitations of physical vertical beamwidth of the UAV-BS beam, it may not be possible to cover the entire user region at UAV altitudes of practical relevance. During such situations, a beam scanning approach is proposed to maximize the achievable sum rates. We develop a comprehensive framework over which outage probabilities and respective sum rates are derived rigorously and we investigate the optimal operational altitude of UAV-BS to maximize the sum rates using our analytical framework. Our analysis shows that NOMA with distance feedback can provide better outage sum rates compared to orthogonal multiple access

    Deep Learning-based Modulation Detection for NOMA Systems

    Full text link
    Since the signal with strong power should be demodulated first for successive interference cancellation (SIC) demodulation in non-orthogonal multiple access (NOMA) systems, the base station (BS) must inform modulation mode of the far user terminal (UT). To avoid unnecessary signaling overhead in this process, a blind detection algorithm of NOMA signal modulation mode is designed in this paper. Taking the joint constellation density diagrams of NOMA signal as the detection features, deep residual network was built for classification, so as to detect the modulation mode of NOMA signal. In view of the fact that the joint constellation diagrams are easily polluted by high intensity noise and loses its real distribution pattern, the wavelet denoising method is adopted to improve the quality of constellations. The simulation results represent that the proposed algorithm can achieve satisfactory detection accuracy in NOMA systems. In addition, the factors affecting the recognition performance are also verified and analyzed

    Performance Analysis of a Hybrid Downlink-Uplink Cooperative NOMA Scheme

    Full text link
    This paper proposes a novel hybrid downlinkuplink cooperative NOMA (HDU-CNOMA) scheme to achieve a better tradeoff between spectral efficiency and signal reception reliability than the conventional cooperative NOMA schemes. In particular, the proposed scheme enables the strong user to perform a cooperative transmission and an interference-free uplink transmission simultaneously during the cooperative phase, at the expense of a slightly decrease in signal reception reliability at the weak user. We analyze the outage probability, diversity order, and outage throughput of the proposed scheme. Simulation results not only confirm the accuracy of the developed analytical results, but also unveil the spectral efficiency gains achieved by the proposed scheme over a baseline cooperative NOMA scheme and a non-cooperative NOMA scheme.Comment: 7 pages, accepted for presentation at the IEEE VTC 2017 Spring, Sydney, Australi

    Joint Fractional Time Allocation and Beamforming for Downlink Multiuser MISO Systems

    Full text link
    It is well-known that the traditional transmit beamforming at a base station (BS) to manage interference in serving multiple users is effective only when the number of users is less than the number of transmit antennas at the BS. Non-orthogonal multiple access (NOMA) can improve the throughput of users with poorer channel conditions by compromising their own privacy because other users with better channel conditions can decode the information of users in poorer channel state. NOMA still prefers that the number of users is less than the number of antennas at the BS transmitter. This paper resolves such issues by allocating separate fractional time slots for serving the users with similar channel conditions. This enables the BS to serve more users within the time unit while the privacy of each user is preserved. The fractional times and beamforming vectors are jointly optimized to maximize the system's throughput. An efficient path-following algorithm, which invokes a simple convex quadratic program at each iteration, is proposed for the solution of this challenging optimization problem. Numerical results confirm its versatility.Comment: IEEE Communications Letters (To Appear
    corecore