105 research outputs found

    Linear precoding for multicarrier and multicast PLC

    Get PDF
    International audienceOne of the first publications of its kind in the exciting field of multiple input multiple output (MIMO) power line communications (PLC), MIMO Power Line Communications: Narrow and Broadband Standards, EMC, and Advanced Processing contains contributions from experts in industry and academia, making it practical enough to provide a solid understanding of how PLC technologies work, yet scientific enough to form a base for ongoing R&D activities. This book is subdivided into five thematic parts. Part I looks at narrow- and broadband channel characterization based on measurements from around the globe. Taking into account current regulations and electromagnetic compatibility (EMC), part II describes MIMO signal processing strategies and related capacity and throughput estimates. Current narrow- and broadband PLC standards and specifications are described in the various chapters of part III. Advanced PLC processing options are treated in part IV, drawing from a wide variety of research areas such as beamforming/precoding, time reversal, multi-user processing, and relaying. Lastly, part V contains case studies and field trials, where the advanced technologies of tomorrow are put into practice today. Suitable as a reference or a handbook, MIMO Power Line Communications: Narrow and Broadband Standards, EMC, and Advanced Processing features self-contained chapters with extensive cross-referencing to allow for a flexible reading path

    Limiting Performance of Conventional and Widely Linear DFT-precoded-OFDM Receivers in Wideband Frequency Selective Channels

    Get PDF
    This paper describes the limiting behavior of linear and decision feedback equalizers (DFEs) in single/multiple antenna systems employing real/complex-valued modulation alphabets. The wideband frequency selective channel is modeled using a Rayleigh fading channel model with infinite number of time domain channel taps. Using this model, we show that the considered equalizers offer a fixed post signal-to-noise-ratio (post-SNR) at the equalizer output that is close to the matched filter bound (MFB). General expressions for the post-SNR are obtained for zero-forcing (ZF) based conventional receivers as well as for the case of receivers employing widely linear (WL) processing. Simulation is used to study the bit error rate (BER) performance of both MMSE and ZF based receivers. Results show that the considered receivers advantageously exploit the rich frequency selective channel to mitigate both fading and inter-symbol-interference (ISI) while offering a performance comparable to the MFB

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    A Dual-Functional Massive MIMO OFDM Communication and Radar Transmitter Architecture

    Get PDF
    In this study, a dual-functional radar and communication (RadCom) system architecture is proposed for application at base-stations (BSs), or access points (APs), for simultaneously communicating with multiple user equipments (UEs) and sensing the environment. Specifically, massive multiple-input multiple-output (mMIMO) communication and orthogonal frequency-division multiplexing (OFDM)-based MIMO radar are considered with the objective to jointly utilize channel diversity and interference. The BS consists of a mMIMO antenna array, and radar transmit and receive antennas. Employing OFDM waveforms for the radar allows the BS to perform channel state information (CSI) estimation for the mMIMO and radar antennas simultaneously. The acquired CSI is then exploited to predict the radar signals received by the UEs. While the radar transmits an OFDM waveform for detecting possible targets in range, the communication system beamforms to the UEs by taking into account the predicted radar interference. To further enhance the capacity of the communication system, an optimum radar waveform is designed. Moreover, the network capacity is mathematically analyzed and verified by simulations. The results show that the proposed RadCom can achieve higher capacity than conventional mMIMO systems by utilizing the radar interference while simultaneously detecting targets

    Spectrum Adaptation in Cognitive Radio Systems with Operating Constraints

    Get PDF
    The explosion of high-data-rate-demanding wireless applications such as smart-phones and wireless Internet access devices, together with growth of existing wireless services, are creating a shortage of the scarce Radio Frequency (RF) spectrum. However, several spectrum measurement campaigns revealed that current spectrum usage across time and frequency is inefficient, creating the artificial shortage of the spectrum because of the traditional exclusive command-and-control model of using the spectrum. Therefore, a new concept of Cognitive Radio (CR) has been emerging recently in which unlicensed users temporarily borrow spectrum from the licensed Primary Users (PU) based on the Dynamic Spectrum Access (DSA) technique that is also known as the spectrum sharing concept. A CR is an intelligent radio system based on the Software Defined Radio platform with artificial intelligence capability which can learn, adapt, and reconfigure through interaction with the operating environment. A CR system will revolutionize the way people share the RF spectrum, lowering harmful interference to the licensed PU of the spectrum, fostering innovative DSA technology and giving people more choices when it comes to using the wireless-communication-dependent applications without having any spectrum congestion problems. A key technical challenge for enabling secondary access to the licensed spectrum adaptation is to ensure that the CR does not interfere with the licensed incumbent users. However, incumbent user behavior is dynamic and requires CR systems to adapt this behavior in order to maintain smooth information transmission. In this context, the objective of this dissertation is to explore design issues for CR systems focusing on adaptation of physical layer parameters related to spectrum sensing, spectrum shaping, and rate/power control. Specifically, this dissertation discusses dynamic threshold adaptation for energy detector spectrum sensing, spectrum allocation and power control in Orthogonal Frequency Division Multiplexing-(OFDM-)based CR with operating constraints, and adjacent band interference suppression techniques in turbo-coded OFDM-based CR systems

    Simultaneous Wireless Information and Power Transfer in 5G communication

    Get PDF
    Green communication technology is expected to be widely adopted in future generation networks to improve energy efficiency and reliability of wireless communication network. Among the green communication technologies,simultaneous wireless information and power transfer (SWIPT) is adopted for its flexible energy harvesting technology through the radio frequency (RF) signa lthati sused for information transmission. Even though existing SWIPT techniques are flexible and adoptable for the wireless communication networks, the power and time resources of the signal need to be shared between infor- mation transmission and RF energy harvesting, and this compromises the quality of the signal. Therefore,SWIP Ttechniques need to be designed to allow an efficient resource allocation for communication and energy harvesting. The goal oft his thesisis to design SWIP Ttechniques that allow efficient,reliable and secure joint communications and power transference. A problem associated to SWIPT techniques combined with multi carrier signals is that the increased power requirements inherent to energy harvesting purposes can exacerbate nonlinear distortion effects at the transmitter. Therefore, we evaluate nonlinear distortion and present feasible solutions to mitigate the impact of nonlinear distortion effects on the performance.Another goal of the thesisis to take advantage of the energy harvesting signals in SWIP Ttechniques for channel estimation and security purposes.Theperformance of these SWIPT techniques is evaluated analytically, and those results are validated by simulations. It is shownthatthe proposed SWIPT schemes can have excellent performance, out performing conventional SWIPT schemes.Espera-se que aschamadas tecnologiasde green communications sejam amplamente ado- tadas em futuras redes de comunicação sem fios para melhorar a sua eficiência energética a fiabilidade.Entre estas,encontram-se as tecnologias SWIPT (Simultaneous Wireless Information and Power Transference), nas quais um sinal radio é usado para transferir simultaneamente potência e informações.Embora as técnicas SWIPT existentes sejam fle- xíveis e adequadas para as redes de comunicações sem fios, os recursos de energia e tempo do sinal precisam ser compartilhados entre a transmissão de informações e de energia, o que pode comprometer a qualidade do sinal. Deste modo,as técnicas SWIPT precisam ser projetadas para permitir uma alocação eficiente de recursos para comunicação e recolha de energia. O objetivo desta tese é desenvolver técnicas SWIPT que permitam transferência de energia e comunicações eficientes,fiáveis e seguras.Um problema associado às técnicas SWIPT combinadas com sinais multi-portadora são as dificuldades de amplificação ine- rentes à combinação de sinais de transmissão de energia com sinais de transferência de dados, que podem exacerbar os efeitos de distorção não-linear nos sinais transmitidos. Deste modo, um dos objectivos desta tese é avaliar o impacto da distorção não-linear em sinais SWIPT, e apresentar soluções viáveis para mitigar os efeitos da distorção não-linear no desempenho da transmissão de dados.Outro objetivo da tese é aproveitar as vantagens dos sinais de transferência de energia em técnicas SWIPT para efeitos de estimação de canal e segurança na comunicação.Os desempenhos dessas técnicas SWIPT são avaliados analiticamente,sendo os respectivos resultados validados por simulações.É mostrado que os esquemas SWIPT propostos podem ter excelente desempenho, superando esquemas SWIPT convencionais
    corecore