5 research outputs found

    Pursuit on a Graph Using Partial Information

    Full text link
    The optimal control of a "blind" pursuer searching for an evader moving on a road network and heading at a known speed toward a set of goal vertices is considered. To aid the "blind" pursuer, certain roads in the network have been instrumented with Unattended Ground Sensors (UGSs) that detect the evader's passage. When the pursuer arrives at an instrumented node, the UGS therein informs the pursuer if and when the evader visited the node. The pursuer's motion is not restricted to the road network. In addition, the pursuer can choose to wait/loiter for an arbitrary time at any UGS location/node. At time 0, the evader passes by an entry node on his way towards one of the exit nodes. The pursuer also arrives at this entry node after some delay and is thus informed about the presence of the intruder/evader in the network, whereupon the chase is on - the pursuer is tasked with capturing the evader. Because the pursuer is "blind", capture entails the pursuer and evader being collocated at an UGS location. If this happens, the UGS is triggered and this information is instantaneously relayed to the pursuer, thereby enabling capture. On the other hand, if the evader reaches one of the exit nodes without being captured, he is deemed to have escaped. We provide an algorithm that computes the maximum initial delay at the entry node for which capture is guaranteed. The algorithm also returns the corresponding optimal pursuit policy

    Monitoring using Heterogeneous Autonomous Agents.

    Full text link
    This dissertation studies problems involving different types of autonomous agents observing objects of interests in an area. Three types of agents are considered: mobile agents, stationary agents, and marsupial agents, i.e., agents capable of deploying other agents or being deployed themselves. Objects can be mobile or stationary. The problem of a mobile agent without fuel constraints revisiting stationary objects is formulated. Visits to objects are dictated by revisit deadlines, i.e., the maximum time that can elapse between two visits to the same object. The problem is shown to be NP-complete and heuristics are provided to generate paths for the agent. Almost periodic paths are proven to exist. The efficacy of the heuristics is shown through simulation. A variant of the problem where the agent has a finite fuel capacity and purchases fuel is treated. Almost periodic solutions to this problem are also shown to exist and an algorithm to compute the minimal cost path is provided. A problem where mobile and stationary agents cooperate to track a mobile object is formulated, shown to be NP-hard, and a heuristic is given to compute paths for the mobile agents. Optimal configurations for the stationary agents are then studied. Several methods are provided to optimally place the stationary agents; these methods are the maximization of Fisher information, the minimization of the probability of misclassification, and the minimization of the penalty incurred by the placement. A method to compute optimal revisit deadlines for the stationary agents is given. The placement methods are compared and their effectiveness shown using numerical results. The problem of two marsupial agents, one carrier and one passenger, performing a general monitoring task using a constrained optimization formulation is stated. Necessary conditions for optimal paths are provided for cases accounting for constrained release of the passenger, termination conditions for the task, as well as retrieval and constrained retrieval of the passenger. A problem involving two marsupial agents collecting information about a stationary object while avoiding detection is then formulated. Necessary conditions for optimal paths are provided and rectilinear motion is demonstrated to be optimal for both agents.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111439/1/jfargeas_1.pd

    Air Force Institute of Technology Research Report 2013

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems Engineering and Management, Operational Sciences, Mathematics, Statistics and Engineering Physics
    corecore