935 research outputs found

    Interleaving schemes for multidimensional cluster errors

    Get PDF
    We present two-dimensional and three-dimensional interleaving techniques for correcting two- and three-dimensional bursts (or clusters) of errors, where a cluster of errors is characterized by its area or volume. Correction of multidimensional error clusters is required in holographic storage, an emerging application of considerable importance. Our main contribution is the construction of efficient two-dimensional and three-dimensional interleaving schemes. The proposed schemes are based on t-interleaved arrays of integers, defined by the property that every connected component of area or volume t consists of distinct integers. In the two-dimensional case, our constructions are optimal: they have the lowest possible interleaving degree. That is, the resulting t-interleaved arrays contain the smallest possible number of distinct integers, hence minimizing the number of codewords required in an interleaving scheme. In general, we observe that the interleaving problem can be interpreted as a graph-coloring problem, and introduce the useful special class of lattice interleavers. We employ a result of Minkowski, dating back to 1904, to establish both upper and lower bounds on the interleaving degree of lattice interleavers in three dimensions. For the case t≡0 mod 6, the upper and lower bounds coincide, and the Minkowski lattice directly yields an optimal lattice interleaver. For t≠0 mod 6, we construct efficient lattice interleavers using approximations of the Minkowski lattice

    Multicluster interleaving on paths and cycles

    Get PDF
    Interleaving codewords is an important method not only for combatting burst errors, but also for distributed data retrieval. This paper introduces the concept of multicluster interleaving (MCI), a generalization of traditional interleaving problems. MCI problems for paths and cycles are studied. The following problem is solved: how to interleave integers on a path or cycle such that any m (m/spl ges/2) nonoverlapping clusters of order 2 in the path or cycle have at least three distinct integers. We then present a scheme using a "hierarchical-chain structure" to solve the following more general problem for paths: how to interleave integers on a path such that any m (m/spl ges/2) nonoverlapping clusters of order L (L/spl ges/2) in the path have at least L+1 distinct integers. It is shown that the scheme solves the second interleaving problem for paths that are asymptotically as long as the longest path on which an MCI exists, and clearly, for shorter paths as well

    Interleaving Schemes on Circulant Graphs with Two Offsets

    Get PDF
    To be added

    Optimal Interleaving on Tori

    Get PDF
    We study t-interleaving on two-dimensional tori, which is defined by the property that any connected subgraph with t or fewer vertices in the torus is labelled by all distinct integers. It has applications in distributed data storage and burst error correction, and is closely related to Lee metric codes. We say that a torus can be perfectly t-interleaved if its t-interleaving number – the minimum number of distinct integers needed to t-interleave the torus – meets the spherepacking lower bound. We prove the necessary and sufficient conditions for tori that can be perfectly t-interleaved, and present efficient perfect t-interleaving constructions. The most important contribution of this paper is to prove that the t-interleaving numbers of tori large enough in both dimensions, which constitute by far the majority of all existing cases, is at most one more than the sphere-packing lower bound, and to present an optimal and efficient t-interleaving scheme for them. Then we prove some bounds on the t-interleaving numbers for other cases, completing a general picture for the t-interleaving problem on 2-dimensional tori

    Optimal Interleaving on Tori

    Get PDF
    This paper studies tt-interleaving on two-dimensional tori. Interleaving has applications in distributed data storage and burst error correction, and is closely related to Lee metric codes. A tt-interleaving of a graph is defined as a vertex coloring in which any connected subgraph of tt or fewer vertices has a distinct color at every vertex. We say that a torus can be perfectly t-interleaved if its t-interleaving number (the minimum number of colors needed for a t-interleaving) meets the sphere-packing lower bound, t2/2\lceil t^2/2 \rceil. We show that a torus is perfectly t-interleavable if and only if its dimensions are both multiples of t2+12\frac{t^2+1}{2} (if t is odd) or t (if t is even). The next natural question is how much bigger the t-interleaving number is for those tori that are not perfectly t-interleavable, and the most important contribution of this paper is to find an optimal interleaving for all sufficiently large tori, proving that when a torus is large enough in both dimensions, its t-interleaving number is at most just one more than the sphere-packing lower bound. We also obtain bounds on t-interleaving numbers for the cases where one or both dimensions are not large, thus completing a general characterization of t-interleaving numbers for two-dimensional tori. Each of our upper bounds is accompanied by an efficient t-interleaving scheme that constructively achieves the bound

    Multi-Cluster interleaving in linear arrays and rings

    Get PDF
    Interleaving codewords is an important method not only for combatting burst-errors, but also for flexible data-retrieving. This paper defines the Multi-Cluster Interleaving (MCI) problem, an interleaving problem for parallel data-retrieving. The MCI problems on linear arrays and rings are studied. The following problem is completely solved: how to interleave integers on a linear array or ring such that any m (m greater than or equal to 2) non-overlapping segments of length 2 in the array or ring have at least 3 distinct integers. We then present a scheme using a 'hierarchical-chain structure' to solve the following more general problem for linear arrays: how to interleave integers on a linear array such that any m (m greater than or equal to 2) non-overlapping segments of length L (L greater than or equal to 2) in the array have at least L + 1 distinct integers. It is shown that the scheme using the 'hierarchical-chain structure' solves the second interleaving problem for arrays that are asymptotically as long as the longest array on which an MCI exists, and clearly, for shorter arrays as well

    Robust and efficient video/image transmission

    Get PDF
    The Internet has become a primary medium for information transmission. The unreliability of channel conditions, limited channel bandwidth and explosive growth of information transmission requests, however, hinder its further development. Hence, research on robust and efficient delivery of video/image content is demanding nowadays. Three aspects of this task, error burst correction, efficient rate allocation and random error protection are investigated in this dissertation. A novel technique, called successive packing, is proposed for combating multi-dimensional (M-D) bursts of errors. A new concept of basis interleaving array is introduced. By combining different basis arrays, effective M-D interleaving can be realized. It has been shown that this algorithm can be implemented only once and yet optimal for a set of error bursts having different sizes for a given two-dimensional (2-D) array. To adapt to variable channel conditions, a novel rate allocation technique is proposed for FineGranular Scalability (FGS) coded video, in which real data based rate-distortion modeling is developed, constant quality constraint is adopted and sliding window approach is proposed to adapt to the variable channel conditions. By using the proposed technique, constant quality is realized among frames by solving a set of linear functions. Thus, significant computational simplification is achieved compared with the state-of-the-art techniques. The reduction of the overall distortion is obtained at the same time. To combat the random error during the transmission, an unequal error protection (UEP) method and a robust error-concealment strategy are proposed for scalable coded video bitstreams
    corecore