1 research outputs found

    Identification of Linear / Nonlinear Systems via the Coyote Optimization Algorithm (COA)

    Get PDF
    Classical techniques used in system identification, like the basic least mean square method (LMS) and its other forms; suffer from instability problems and convergence to a locally optimal solution instead of a global solution. These problems can be reduced by applying optimization techniques inspired by nature. This paper applies the Coyote optimization algorithm (COA) to identify linear or nonlinear systems. In the case of linear systems identification, the infinite impulse response (IIR) filter is used to constitute the plants. In this work, COA algorithm is applied to identify different plants, and its performance is investigated and compared to that based on particle swarm optimization algorithm (PSOA), which is considered as one of the simplest and most popular optimization algorithms. The performance is investigated for different cases including same order and reduced-order filter models. The acquired results illustrate the ability of the COA algorithm to obtain the lowest error between the proposed IIR filter and the actual system in most cases. Also, a statistical analysis is performed for the two algorithms. Also, the COA is used to optimize the identification process of nonlinear systems based on Hammerstein models. For this purpose, COA is used to determine the parameters of the Hammerstein models of two different examples, which were identified in the literature using other algorithms. For more investigation, the fulfillment of the COA is compared to that of some other competitive heuristic algorithms. Most of the results prove the effectiveness of COA in system identification problems
    corecore