4 research outputs found

    A learning rule balancing energy consumption and information maximization in a feed-forward neuronal network

    Get PDF
    Information measures are often used to assess the efficacy of neural networks, and learning rules can be derived through optimization procedures on such measures. In biological neural networks, computation is restricted by the amount of available resources. Considering energy restrictions, it is thus reasonable to balance information processing efficacy with energy consumption. Here, we studied networks of non-linear Hawkes neurons and assessed the information flow through these networks using mutual information. We then applied gradient descent for a combination of mutual information and energetic costs to obtain a learning rule. Through this procedure, we obtained a rule containing a sliding threshold, similar to the Bienenstock-Cooper-Munro rule. The rule contains terms local in time and in space plus one global variable common to the whole network. The rule thus belongs to so-called three-factor rules and the global variable could be related to a number of biological processes. In neural networks using this learning rule, frequent inputs get mapped onto low energy orbits of the network while rare inputs aren't learned

    Information Theory is abused in neuroscience

    Get PDF
    In 1948, Claude Shannon introduced his version of a concept that was core to Norbert Wiener's cybernetics, namely, information theory. Shannon's formalisms include a physical framework, namely a general communication system having six unique elements. Under this framework, Shannon information theory offers two particularly useful statistics, channel capacity and information transmitted. Remarkably, hundreds of neuroscience laboratories subsequently reported such numbers. But how (and why) did neuroscientists adapt a communications-engineering framework? Surprisingly, the literature offers no clear answers. To therefore first answer "how", 115 authoritative peer-reviewed papers, proceedings, books and book chapters were scrutinized for neuroscientists' characterizations of the elements of Shannon's general communication system. Evidently, many neuroscientists attempted no identification of the system's elements. Others identified only a few of Shannon's system's elements. Indeed, the available neuroscience interpretations show a stunning incoherence, both within and across studies. The interpretational gamut implies hundreds, perhaps thousands, of different possible neuronal versions of Shannon's general communication system. The obvious lack of a definitive, credible interpretation makes neuroscience calculations of channel capacity and information transmitted meaningless. To now answer why Shannon's system was ever adapted for neuroscience, three common features of the neuroscience literature were examined: ignorance of the role of the observer, the presumption of "decoding" of neuronal voltage-spike trains, and the pursuit of ingrained analogies such as information, computation, and machine. Each of these factors facilitated a plethora of interpretations of Shannon's system elements. Finally, let us not ignore the impact of these "informational misadventures" on society at large. It is the same impact as scientific fraud
    corecore