10,531 research outputs found

    A Sub-optimal Algorithm to Synthesize Control Laws for a Network of Dynamic Agents

    Get PDF
    We study the synthesis problem of an LQR controller when the matrix describing the control law is constrained to lie in a particular vector space. Our motivation is the use of such control laws to stabilize networks of autonomous agents in a decentralized fashion; with the information flow being dictated by the constraints of a pre-specified topology. In this paper, we consider the finite-horizon version of the problem and provide both a computationally intensive optimal solution and a sub-optimal solution that is computationally more tractable. Then we apply the technique to the decentralized vehicle formation control problem and show that the loss in performance due to the use of the sub-optimal solution is not huge; however the topology can have a large effect on performance

    A Decentralized Method for Joint Admission Control and Beamforming in Coordinated Multicell Downlink

    Full text link
    In cellular networks, admission control and beamforming optimization are intertwined problems. While beamforming optimization aims at satisfying users' quality-of-service (QoS) requirements or improving the QoS levels, admission control looks at how a subset of users should be selected so that the beamforming optimization problem can yield a reasonable solution in terms of the QoS levels provided. However, in order to simplify the design, the two problems are usually seen as separate problems. This paper considers joint admission control and beamforming (JACoB) under a coordinated multicell MISO downlink scenario. We formulate JACoB as a user number maximization problem, where selected users are guaranteed to receive the QoS levels they requested. The formulated problem is combinatorial and hard, and we derive a convex approximation to the problem. A merit of our convex approximation formulation is that it can be easily decomposed for per-base-station decentralized optimization, namely, via block coordinate decent. The efficacy of the proposed decentralized method is demonstrated by simulation results.Comment: 2012 IEEE Asilomar Conference on Signals, Systems, and Computer
    corecore