310 research outputs found

    The Economic Cybernetics Analysis and the Effects of the Occurrence of COVID-19 in Romania

    Get PDF
    From the perspectives of early warning and identification of risk, risk quantification and analysis, also as risk management, we propose recommendation, which includes analysis of citizen behavior in panic, cooperation of the institutions in Romania. The whole analysis will be performed from a perspective of the field of economic cybernetics. The 2019-nCoV coronavirus epidemic started in China's Wuhan city, which has spread throughout the country and subsequently, in a very short period of time, in several states, being viewed as a global contagion effect that causes great concern. As the virus gets closer to Romania, it becomes worrying and citizens are already panicking. Therefore, in this article we will analyze, according to public data, what is the current situation and how well Romania is prepared to manage the risks arising from the confirmation of COVID-19 in the country and how the behavior of citizens in a state of panic is influenced. In addition, we analysed the medical system from Romania from the point of view of the analysis of the management of the viable system, in the situation of pandemic crisis the medical system being one of the sensitive points of any system

    Epidemic Modeling using Hybrid of Time-varying SIRD, Particle Swarm Optimization, and Deep Learning

    Full text link
    Epidemiological models are best suitable to model an epidemic if the spread pattern is stationary. To deal with non-stationary patterns and multiple waves of an epidemic, we develop a hybrid model encompassing epidemic modeling, particle swarm optimization, and deep learning. The model mainly caters to three objectives for better prediction: 1. Periodic estimation of the model parameters. 2. Incorporating impact of all the aspects using data fitting and parameter optimization 3. Deep learning based prediction of the model parameters. In our model, we use a system of ordinary differential equations (ODEs) for Susceptible-Infected-Recovered-Dead (SIRD) epidemic modeling, Particle Swarm Optimization (PSO) for model parameter optimization, and stacked-LSTM for forecasting the model parameters. Initial or one time estimation of model parameters is not able to model multiple waves of an epidemic. So, we estimate the model parameters periodically (weekly). We use PSO to identify the optimum values of the model parameters. We next train the stacked-LSTM on the optimized parameters, and perform forecasting of the model parameters for upcoming four weeks. Further, we fed the LSTM forecasted parameters into the SIRD model to forecast the number of COVID-19 cases. We evaluate the model for highly affected three countries namely; the USA, India, and the UK. The proposed hybrid model is able to deal with multiple waves, and has outperformed existing methods on all the three datasets.Comment: Accepted in ICCCNT 202

    From Social Simulation to Integrative System Design

    Full text link
    As the recent financial crisis showed, today there is a strong need to gain "ecological perspective" of all relevant interactions in socio-economic-techno-environmental systems. For this, we suggested to set-up a network of Centers for integrative systems design, which shall be able to run all potentially relevant scenarios, identify causality chains, explore feedback and cascading effects for a number of model variants, and determine the reliability of their implications (given the validity of the underlying models). They will be able to detect possible negative side effect of policy decisions, before they occur. The Centers belonging to this network of Integrative Systems Design Centers would be focused on a particular field, but they would be part of an attempt to eventually cover all relevant areas of society and economy and integrate them within a "Living Earth Simulator". The results of all research activities of such Centers would be turned into informative input for political Decision Arenas. For example, Crisis Observatories (for financial instabilities, shortages of resources, environmental change, conflict, spreading of diseases, etc.) would be connected with such Decision Arenas for the purpose of visualization, in order to make complex interdependencies understandable to scientists, decision-makers, and the general public.Comment: 34 pages, Visioneer White Paper, see http://www.visioneer.ethz.c

    Control Strategies for COVID-19 Epidemic with Vaccination, Shield Immunity and Quarantine: A Metric Temporal Logic Approach

    Full text link
    Ever since the outbreak of the COVID-19 epidemic, various public health control strategies have been proposed and tested against the coronavirus SARS-CoV-2. We study three specific COVID-19 epidemic control models: the susceptible, exposed, infectious, recovered (SEIR) model with vaccination control; the SEIR model with shield immunity control; and the susceptible, un-quarantined infected, quarantined infected, confirmed infected (SUQC) model with quarantine control. We express the control requirement in metric temporal logic (MTL) formulas (a type of formal specification languages) which can specify the expected control outcomes such as "the deaths from the infection should never exceed one thousand per day within the next three months" or "the population immune from the disease should eventually exceed 200 thousand within the next 100 to 120 days". We then develop methods for synthesizing control strategies with MTL specifications. To the best of our knowledge, this is the first paper to systematically synthesize control strategies based on the COVID-19 epidemic models with formal specifications. We provide simulation results in three different case studies: vaccination control for the COVID-19 epidemic with model parameters estimated from data in Lombardy, Italy; shield immunity control for the COVID-19 epidemic with model parameters estimated from data in Lombardy, Italy; and quarantine control for the COVID-19 epidemic with model parameters estimated from data in Wuhan, China. The results show that the proposed synthesis approach can generate control inputs such that the time-varying numbers of individuals in each category (e.g., infectious, immune) satisfy the MTL specifications. The results also show that early intervention is essential in mitigating the spread of COVID-19, and more control effort is needed for more stringent MTL specifications
    • …
    corecore