4 research outputs found

    Bounds for DNA codes with constant GC-content

    Full text link
    We derive theoretical upper and lower bounds on the maximum size of DNA codes of length n with constant GC-content w and minimum Hamming distance d, both with and without the additional constraint that the minimum Hamming distance between any codeword and the reverse-complement of any codeword be at least d. We also explicitly construct codes that are larger than the best previously-published codes for many choices of the parameters n, d and w.Comment: 13 pages, no figures; a few references added and typos correcte

    Linear Size Optimal q-ary Constant-Weight Codes and Constant-Composition Codes

    Full text link
    An optimal constant-composition or constant-weight code of weight ww has linear size if and only if its distance dd is at least 2wβˆ’12w-1. When dβ‰₯2wd\geq 2w, the determination of the exact size of such a constant-composition or constant-weight code is trivial, but the case of d=2wβˆ’1d=2w-1 has been solved previously only for binary and ternary constant-composition and constant-weight codes, and for some sporadic instances. This paper provides a construction for quasicyclic optimal constant-composition and constant-weight codes of weight ww and distance 2wβˆ’12w-1 based on a new generalization of difference triangle sets. As a result, the sizes of optimal constant-composition codes and optimal constant-weight codes of weight ww and distance 2wβˆ’12w-1 are determined for all such codes of sufficiently large lengths. This solves an open problem of Etzion. The sizes of optimal constant-composition codes of weight ww and distance 2wβˆ’12w-1 are also determined for all w≀6w\leq 6, except in two cases.Comment: 12 page

    Approximate generalized Steiner systems and near-optimal constant weight codes

    Full text link
    Constant weight codes (CWCs) and constant composition codes (CCCs) are two important classes of codes that have been studied extensively in both combinatorics and coding theory for nearly sixty years. In this paper we show that for {\it all} fixed odd distances, there exist near-optimal CWCs and CCCs asymptotically achieving the classic Johnson-type upper bounds. Let Aq(n,w,d)A_q(n,w,d) denote the maximum size of qq-ary CWCs of length nn with constant weight ww and minimum distance dd. One of our main results shows that for {\it all} fixed q,wq,w and odd dd, one has lim⁑nβ†’βˆžAq(n,d,w)(nt)=(qβˆ’1)t(wt)\lim_{n\rightarrow\infty}\frac{A_q(n,d,w)}{\binom{n}{t}}=\frac{(q-1)^t}{\binom{w}{t}}, where t=2wβˆ’d+12t=\frac{2w-d+1}{2}. This implies the existence of near-optimal generalized Steiner systems originally introduced by Etzion, and can be viewed as a counterpart of a celebrated result of R\"odl on the existence of near-optimal Steiner systems. Note that prior to our work, very little is known about Aq(n,w,d)A_q(n,w,d) for qβ‰₯3q\ge 3. A similar result is proved for the maximum size of CCCs. We provide different proofs for our two main results, based on two strengthenings of the well-known Frankl-R\"odl-Pippenger theorem on the existence of near-optimal matchings in hypergraphs: the first proof follows by Kahn's linear programming variation of the above theorem, and the second follows by the recent independent work of Delcour-Postle, and Glock-Joos-Kim-K\"uhn-Lichev on the existence of near-optimal matchings avoiding certain forbidden configurations. We also present several intriguing open questions for future research.Comment: 15 pages, introduction revise
    corecore