6,209 research outputs found

    Dynamic Balanced Graph Partitioning

    Full text link
    This paper initiates the study of the classic balanced graph partitioning problem from an online perspective: Given an arbitrary sequence of pairwise communication requests between nn nodes, with patterns that may change over time, the objective is to service these requests efficiently by partitioning the nodes into \ell clusters, each of size kk, such that frequently communicating nodes are located in the same cluster. The partitioning can be updated dynamically by migrating nodes between clusters. The goal is to devise online algorithms which jointly minimize the amount of inter-cluster communication and migration cost. The problem features interesting connections to other well-known online problems. For example, scenarios with =2\ell=2 generalize online paging, and scenarios with k=2k=2 constitute a novel online variant of maximum matching. We present several lower bounds and algorithms for settings both with and without cluster-size augmentation. In particular, we prove that any deterministic online algorithm has a competitive ratio of at least kk, even with significant augmentation. Our main algorithmic contributions are an O(klogk)O(k \log{k})-competitive deterministic algorithm for the general setting with constant augmentation, and a constant competitive algorithm for the maximum matching variant

    MorphoSys: efficient colocation of QoS-constrained workloads in the cloud

    Full text link
    In hosting environments such as IaaS clouds, desirable application performance is usually guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated for unencumbered use for proper operation. Arbitrary colocation of applications with different SLAs on a single host may result in inefficient utilization of the host’s resources. In this paper, we propose that periodic resource allocation and consumption models -- often used to characterize real-time workloads -- be used for a more granular expression of SLAs. Our proposed SLA model has the salient feature that it exposes flexibilities that enable the infrastructure provider to safely transform SLAs from one form to another for the purpose of achieving more efficient colocation. Towards that goal, we present MORPHOSYS: a framework for a service that allows the manipulation of SLAs to enable efficient colocation of arbitrary workloads in a dynamic setting. We present results from extensive trace-driven simulations of colocated Video-on-Demand servers in a cloud setting. These results show that potentially-significant reduction in wasted resources (by as much as 60%) are possible using MORPHOSYS.National Science Foundation (0720604, 0735974, 0820138, 0952145, 1012798

    Dynamic Beats Fixed: On Phase-Based Algorithms for File Migration

    Get PDF
    In this paper, we construct a deterministic 4-competitive algorithm for the online file migration problem, beating the currently best 20-year old, 4.086-competitive MTLM algorithm by Bartal et al. (SODA 1997). Like MTLM, our algorithm also operates in phases, but it adapts their lengths dynamically depending on the geometry of requests seen so far. The improvement was obtained by carefully analyzing a linear model (factor-revealing LP) of a single phase of the algorithm. We also show that if an online algorithm operates in phases of fixed length and the adversary is able to modify the graph between phases, no algorithm can beat the competitive ratio of 4.086

    Strategic and operational services for workload management in the cloud

    Full text link
    In hosting environments such as Infrastructure as a Service (IaaS) clouds, desirable application performance is typically guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated by a service provider for unencumbered use by customers to ensure proper operation of their workloads. Most IaaS offerings are presented to customers as fixed-size and fixed-price SLAs, that do not match well the needs of specific applications. Furthermore, arbitrary colocation of applications with different SLAs may result in inefficient utilization of hosts' resources, resulting in economically undesirable customer behavior. In this thesis, we propose the design and architecture of a Colocation as a Service (CaaS) framework: a set of strategic and operational services that allow the efficient colocation of customer workloads. CaaS strategic services provide customers the means to specify their application workload using an SLA language that provides them the opportunity and incentive to take advantage of any tolerances they may have regarding the scheduling of their workloads. CaaS operational services provide the information necessary for, and carry out the reconfigurations mandated by strategic services. We recognize that it could be the case that there are multiple, yet functionally equivalent ways to express an SLA. Thus, towards that end, we present a service that allows the provably-safe transformation of SLAs from one form to another for the purpose of achieving more efficient colocation. Our CaaS framework could be incorporated into an IaaS offering by providers or it could be implemented as a value added proposition by IaaS resellers. To establish the practicality of such offerings, we present a prototype implementation of our proposed CaaS framework

    Cost thresholds for dynamic resource location

    Get PDF
    AbstractThe traditional dynamic resource location problem attempts to minimize the cost of servicing a number of sequential requests, given foreknowledge of a limited number of requests. One artificial constraint of this problem is the presumption that resource relocation and remote servicing of requests have identical costs. Parameterizing the ratio of relocation cost to service cost leads to two extreme behaviors in terms of dynamic optimizability. The threshold at which a specific graph transitions between these behaviors reveals certain characteristics of the graph's decomposability into cycles

    A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

    Get PDF
    The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.Comment: 22 Pages, 4 Figures, 4 Tables, in pres

    Uniform page migration problem in Euclidean space

    Get PDF
    金沢大学理工研究域電子情報学系The page migration problem in Euclidean space is revisited. In this problem, online requests occur at any location to access a single page located at a server. Every request must be served, and the server has the choice to migrate from its current location to a new location in space. Each service costs the Euclidean distance between the server and request. A migration costs the distance between the former and the new server location, multiplied by the page size. We study the problem in the uniform model, in which the page has size D = 1. All request locations are not known in advance; however, they are sequentially presented in an online fashion. We design a 2.75-competitive online algorithm that improves the current best upper bound for the problem with the unit page size. We also provide a lower bound of 2.732 for our algorithm. It was already known that 2.5 is a lower bound for this problem. © 2016 by the authors; licensee MDPI, Basel, Switzerland
    corecore