8 research outputs found

    Constructions of Binary Optimal Locally Repairable Codes via Intersection Subspaces

    Full text link
    Locally repairable codes (LRCs), which can recover any symbol of a codeword by reading only a small number of other symbols, have been widely used in real-world distributed storage systems, such as Microsoft Azure Storage and Ceph Storage Cluster. Since binary linear LRCs can significantly reduce coding and decoding complexity, constructions of binary LRCs are of particular interest. The aim of this paper is to construct dimensional optimal binary locally repairable codes with disjoint local repair groups. We introduce how to connect intersection subspaces with binary locally repairable codes and construct dimensional optimal binary linear LRCs with locality 2b2^b (b≥3b\geq 3) and minimum distance d≥6d\geq 6 by employing intersection subspaces deduced from the direct sum. This method will sufficiently increase the number of possible repair groups of dimensional optimal LRCs, and thus efficiently expanding the range of the construction parameters while keeping the largest code rates compared with all known binary linear LRCs with minimum distance d≥6d\geq 6 and locality 2b2^b (b≥3b\geq 3).Comment: Accepted for publication in the SCIENCE CHINA Information Science

    Locally repairable convertible codes with optimal access costs

    Full text link
    Modern large-scale distributed storage systems use erasure codes to protect against node failures with low storage overhead. In practice, the failure rate and other factors of storage devices in the system may vary significantly over time, and leads to changes of the ideal code parameters. To maintain the storage efficiency, this requires the system to adjust parameters of the currently used codes. The changing process of code parameters on encoded data is called code conversion. As an important class of storage codes, locally repairable codes (LRCs) can repair any codeword symbol using a small number of other symbols. This feature makes LRCs highly efficient for addressing single node failures in the storage systems. In this paper, we investigate the code conversions for locally repairable codes in the merge regime. We establish a lower bound on the access cost of code conversion for general LRCs and propose a general construction of LRCs that can perform code conversions with access cost matching this bound. This construction provides a family of LRCs together with optimal conversion process over the field of size linear in the code length.Comment: 25 page
    corecore