2,773 research outputs found

    Good Random Matrices over Finite Fields

    Full text link
    The random matrix uniformly distributed over the set of all m-by-n matrices over a finite field plays an important role in many branches of information theory. In this paper a generalization of this random matrix, called k-good random matrices, is studied. It is shown that a k-good random m-by-n matrix with a distribution of minimum support size is uniformly distributed over a maximum-rank-distance (MRD) code of minimum rank distance min{m,n}-k+1, and vice versa. Further examples of k-good random matrices are derived from homogeneous weights on matrix modules. Several applications of k-good random matrices are given, establishing links with some well-known combinatorial problems. Finally, the related combinatorial concept of a k-dense set of m-by-n matrices is studied, identifying such sets as blocking sets with respect to (m-k)-dimensional flats in a certain m-by-n matrix geometry and determining their minimum size in special cases.Comment: 25 pages, publishe

    Parsing a sequence of qubits

    Full text link
    We develop a theoretical framework for frame synchronization, also known as block synchronization, in the quantum domain which makes it possible to attach classical and quantum metadata to quantum information over a noisy channel even when the information source and sink are frame-wise asynchronous. This eliminates the need of frame synchronization at the hardware level and allows for parsing qubit sequences during quantum information processing. Our framework exploits binary constant-weight codes that are self-synchronizing. Possible applications may include asynchronous quantum communication such as a self-synchronizing quantum network where one can hop into the channel at any time, catch the next coming quantum information with a label indicating the sender, and reply by routing her quantum information with control qubits for quantum switches all without assuming prior frame synchronization between users.Comment: 11 pages, 2 figures, 1 table. Final accepted version for publication in the IEEE Transactions on Information Theor

    Bounds and Constructions of Singleton-Optimal Locally Repairable Codes with Small Localities

    Full text link
    Constructions of optimal locally repairable codes (LRCs) achieving Singleton-type bound have been exhaustively investigated in recent years. In this paper, we consider new bounds and constructions of Singleton-optimal LRCs with minmum distance d=6d=6, locality r=3r=3 and minimum distance d=7d=7 and locality r=2r=2, respectively. Firstly, we establish equivalent connections between the existence of these two families of LRCs and the existence of some subsets of lines in the projective space with certain properties. Then, we employ the line-point incidence matrix and Johnson bounds for constant weight codes to derive new improved bounds on the code length, which are tighter than known results. Finally, by using some techniques of finite field and finite geometry, we give some new constructions of Singleton-optimal LRCs, which have larger length than previous ones

    Problems on q-Analogs in Coding Theory

    Full text link
    The interest in qq-analogs of codes and designs has been increased in the last few years as a consequence of their new application in error-correction for random network coding. There are many interesting theoretical, algebraic, and combinatorial coding problems concerning these q-analogs which remained unsolved. The first goal of this paper is to make a short summary of the large amount of research which was done in the area mainly in the last few years and to provide most of the relevant references. The second goal of this paper is to present one hundred open questions and problems for future research, whose solution will advance the knowledge in this area. The third goal of this paper is to present and start some directions in solving some of these problems.Comment: arXiv admin note: text overlap with arXiv:0805.3528 by other author
    • …
    corecore