1,213 research outputs found

    Application of Network Calculus To Guaranteed Service Networks

    Get PDF
    We use recent network calculus results to study some properties of lossless multiplexing as it may be used in guaranteed service networks. We call network calculus a set of results that apply min-plus algebra to packet networks. We provide a simple proof that shaping a traffic stream to conform with a burstiness constraint preserves the original constraints satisfied by the traffic stream We show how all rate based packet schedulers can be modeled with a simple rate latency service curve. Then we define a general form of deterministic effective bandwidth and equivalent capacity. We find that call acceptance regions based on deterministic criteria (loss or delay) are convex, in contrast to statistical cases where it the complement of the region which is convex. We thus find that, in general, the limit of the call acceptance region based on statistical multiplexing when the loss probability target tends to 0 may be strictly larger than the call acceptance region based on lossless multiplexing. Lastly, we consider the problem of determining the optimal parameters of a variable bit rate (VBR) connection when it is used as a trunk, or tunnel, given that the input traffic is known. We find that there is an optimal peak rate for the VBR trunk, essentially insensitive to the optimization criteria. For a linear cost function, we find an explicit algorithm for the optimal remaining parameters of the VBR trunk

    Theories and Models for Internet Quality of Service

    Get PDF
    We survey recent advances in theories and models for Internet Quality of Service (QoS). We start with the theory of network calculus, which lays the foundation for support of deterministic performance guarantees in networks, and illustrate its applications to integrated services, differentiated services, and streaming media playback delays. We also present mechanisms and architecture for scalable support of guaranteed services in the Internet, based on the concept of a stateless core. Methods for scalable control operations are also briefly discussed. We then turn our attention to statistical performance guarantees, and describe several new probabilistic results that can be used for a statistical dimensioning of differentiated services. Lastly, we review recent proposals and results in supporting performance guarantees in a best effort context. These include models for elastic throughput guarantees based on TCP performance modeling, techniques for some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support

    Multi-Terabit/s IP Switching with Guaranteed Service for Streaming Traffic

    Full text link
    traffic on the Internet continues to grow exponentially, there is a real need to solve transmission and switching scalability. Moreover, future Internet traffic will be dominated by streaming media flows, such as video-telephony, video-conferencing, 3D video, virtual reality, and many more. Consequently, network solutions will need to offer quality of service and traffic engineering together with the above mentioned scalability - i.e., over-provisioning is not likely be a viable solution to accommodate streaming media traffic. This paper describes the architecture of a ultra-scalable IP switch and the first experiments with a prototypal implementation. The switch scalability is a consequence of it operating pipeline forwarding of packets, which also results in quality of service guarantees for UDP-based streaming applications, while preserving elastic TCP-based traffic as is, i.e., without affecting any existing applications based on "best- effort" services. Moreover, the prototype demonstrates the low complexity of pipeline forwarding implementation as the deployed network gear was realized from off-the-shelf components in only nine months through the design, implementation, and testing efforts of the authors

    Advances in Internet Quality of Service

    Get PDF
    We describe recent advances in theories and architecture that support performance guarantees needed for quality of service networks. We start with deterministic computations and give applications to integrated services, differentiated services, and playback delays. We review the methods used for obtaining a scalable integrated services support, based on the concept of a stateless core. New probabilistic results that can be used for a statistical dimensioning of differentiated services are explained; some are based on classical queuing theory, while others capitalize on the deterministic results. Then we discuss performance guarantees in a best effort context; we review: methods to provide some quality of service in a pure best effort environment; methods to provide some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support

    Application of learning algorithms to traffic management in integrated services networks.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN027131 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Performance Management in ATM Networks

    Get PDF
    ATM is representative of the connection-oriented resource provisioning classof protocols. The ATM network is expected to provide end-to-end QoS guaranteesto connections in the form of bounds on delays, errors and/or losses. Performancemanagement involves measurement of QoS parameters, and application of controlmeasures (if required) to improve the QoS provided to connections, or to improvethe resource utilization at switches. QoS provisioning is very important for realtimeconnections in which losses are irrecoverable and delays cause interruptionsin service. QoS of connections on a node is a direct function of the queueing andscheduling on the switch. Most scheduling architectures provide static allocationof resources (scheduling priority, maximum buffer) at connection setup time. Endto-end bounds are obtainable for some schedulers, however these are precluded forheterogeneously composed networks. The resource allocation does not adapt to theQoS provided on connections in real time. In addition, mechanisms to measurethe QoS of a connection in real-time are scarce.In this thesis, a novel framework for performance management is proposed. Itprovides QoS guarantees to real time connections. It comprises of in-service QoSmonitoring mechanisms, a hierarchical scheduling algorithm based on dynamicpriorities that are adaptive to measurements, and methods to tune the schedulers atindividual nodes based on the end-to-end measurements. Also, a novel scheduler isintroduced for scheduling maximum delay sensitive traffic. The worst case analysisfor the leaky bucket constrained traffic arrivals is presented for this scheduler. Thisscheduler is also implemented on a switch and its practical aspects are analyzed.In order to understand the implementability of complex scheduling mechanisms,a comprehensive survey of the state-of-the-art technology used in the industry isperformed. The thesis also introduces a method of measuring the one-way delayand jitter in a connection using in-service monitoring by special cells

    Evaluation of IEEE 802.1 Time Sensitive Networking Performance for Microgrid and Smart Grid Power System Applications

    Get PDF
    Proliferation of distributed energy resources and the importance of smart energy management has led to increased interest in microgrids. A microgrid is an area of the grid that can be disconnected and operated independently from the main grid when required and can generate some or all of its own energy needs with distributed energy resources and battery storage. This allows for the microgrid area to continue operating even when the main grid is unavailable. In addition, often a microgrid can utilize waste heat from energy generation to drive thermal loads, further improving energy utilization. This leads to increased reliability and overall efficiency in the microgrid area.As microgrids (and by extension the smart grid) become more widespread, new methods of communication and control are required to aid in management of many different distributed entities. One such communication architecture that may prove useful is the set of IEEE 802.1 Time Sensitive Networking (TSN) standards. These standards specify improvements and new capabilities for LAN based communication networks that previously made them unsuitable for widespread deployment in a power system setting. These standards include specifications for low latency guarantees, clock synchronization, data frame redundancy, and centralized system administration. These capabilities were previously available on proprietary or application specific solutions. However, they will now be available as part of the Ethernet standard, enabling backwards compatibility with existing network architecture and support with future advances.Two of the featured standards, IEEE 802.1AS (governing time-synchronization) and IEEE 802.1Qbv (governing time aware traffic shaping), will be tested and evaluated for their potential utility in power systems and microgrid applications. These tests will measure the latency achievable using TSN over a network at various levels of congestion and compare these results with UDP and TCP protocols. In addition, the ability to use synchronized clocks to generate waveforms for microgrid inverter synchronization will be explored
    • 

    corecore