620 research outputs found

    Reallocation Problems in Scheduling

    Full text link
    In traditional on-line problems, such as scheduling, requests arrive over time, demanding available resources. As each request arrives, some resources may have to be irrevocably committed to servicing that request. In many situations, however, it may be possible or even necessary to reallocate previously allocated resources in order to satisfy a new request. This reallocation has a cost. This paper shows how to service the requests while minimizing the reallocation cost. We focus on the classic problem of scheduling jobs on a multiprocessor system. Each unit-size job has a time window in which it can be executed. Jobs are dynamically added and removed from the system. We provide an algorithm that maintains a valid schedule, as long as a sufficiently feasible schedule exists. The algorithm reschedules only a total number of O(min{log^* n, log^* Delta}) jobs for each job that is inserted or deleted from the system, where n is the number of active jobs and Delta is the size of the largest window.Comment: 9 oages, 1 table; extended abstract version to appear in SPAA 201

    Optimal on-line flow time with resource augmentation

    Get PDF
    AbstractWe study the problem of scheduling n jobs that arrive over time. We consider a non-preemptive setting on a single machine. The goal is to minimize the total flow time. We use extra resource competitive analysis: an optimal off-line algorithm which schedules jobs on a single machine is compared to a more powerful on-line algorithm that has ℓ machines. We design an algorithm of competitive ratio 1+2min(Δ1/ℓ,n1/ℓ), where Δ is the maximum ratio between two job sizes, and provide a lower bound which shows that the algorithm is optimal up to a constant factor for any constant ℓ. The algorithm works for a hard version of the problem where the sizes of the smallest and the largest jobs are not known in advance, only Δ and n are known. This gives a trade-off between the resource augmentation and the competitive ratio.We also consider scheduling on parallel identical machines. In this case the optimal off-line algorithm has m machines and the on-line algorithm has ℓm machines. We give a lower bound for this case. Next, we give lower bounds for algorithms using resource augmentation on the speed. Finally, we consider scheduling with hard deadlines, and scheduling so as to minimize the total completion time

    New results on flow time with resource augmentation

    Get PDF
    We study the problem of scheduling nn jobs that arrive over time. We consider a non-preemptive setting on a single machine. The goal is to minimize the total flow time. We use extra resource competitive analysis: an optimal off-line algorithm which schedules jobs on a single machine is compared to a more powerful on-line algorithm that has ll machines. We design an algorithm of competitive ratio O(min(Delta^{1/l,n^{1/l)), where DeltaDelta is the maximum ratio between two job sizes, and provide a lower bound which shows that the algorithm is optimal up to a constant factor for any constant ll. The algorithm works for a hard version of the problem where the sizes of the smallest and the largest jobs are not known in advance, only DeltaDelta is known. This gives a trade-off between the resource augmentation and the competitive ratio. We also consider scheduling on parallel identical machines. In this case the optimal off-line algorithm has mm machines and the on-line algorithm has lmlm machines. We give a lower bound for this case. Next, we give lower bounds for algorithms using resource augmentation on the speed. Finally, we consider scheduling with hard deadlines

    Online Scheduling on Identical Machines using SRPT

    Full text link
    Due to its optimality on a single machine for the problem of minimizing average flow time, Shortest-Remaining-Processing-Time (\srpt) appears to be the most natural algorithm to consider for the problem of minimizing average flow time on multiple identical machines. It is known that \srpt achieves the best possible competitive ratio on multiple machines up to a constant factor. Using resource augmentation, \srpt is known to achieve total flow time at most that of the optimal solution when given machines of speed 2−1m2- \frac{1}{m}. Further, it is known that \srpt's competitive ratio improves as the speed increases; \srpt is ss-speed 1s\frac{1}{s}-competitive when s≥2−1ms \geq 2- \frac{1}{m}. However, a gap has persisted in our understanding of \srpt. Before this work, the performance of \srpt was not known when \srpt is given (1+\eps)-speed when 0 < \eps < 1-\frac{1}{m}, even though it has been thought that \srpt is (1+\eps)-speed O(1)O(1)-competitive for over a decade. Resolving this question was suggested in Open Problem 2.9 from the survey "Online Scheduling" by Pruhs, Sgall, and Torng \cite{PruhsST}, and we answer the question in this paper. We show that \srpt is \emph{scalable} on mm identical machines. That is, we show \srpt is (1+\eps)-speed O(\frac{1}{\eps})-competitive for \eps >0. We complement this by showing that \srpt is (1+\eps)-speed O(\frac{1}{\eps^2})-competitive for the objective of minimizing the ℓk\ell_k-norms of flow time on mm identical machines. Both of our results rely on new potential functions that capture the structure of \srpt. Our results, combined with previous work, show that \srpt is the best possible online algorithm in essentially every aspect when migration is permissible.Comment: Accepted for publication at SODA. This version fixes an error in a preliminary versio

    Online bin packing with resource augmentation

    Get PDF
    In competitive analysis, we usually do not put any restrictions on the computational complexity of online algorithms, although efficient algorithms are preferred. Thus if such an algorithm were given the entire input in advance, it could give an optimal solution (in exponential time). Instead of giving the algorithm more knowledge about the input, in this paper we consider the effects of giving an online bin packing algorithm larger bins than the offline algorithm it is compared to. We give new algorithms for this problem that combine items in bins in an unusual way and give bounds on their performance which improve upon the best possible bounded space algorithm. We also give general lower bounds for this problem which are nearly matching for bin sizes b ?

    Scenario driven optimal sequencing under deep uncertainty

    Get PDF
    Abstract not availableEva H.Y. Beh, Holger R. Maier, Graeme C. Dand
    • …
    corecore