2 research outputs found

    Risk-Aware Planning and Assignment for Ground Vehicles using Uncertain Perception from Aerial Vehicles

    Full text link
    We propose a risk-aware framework for multi-robot, multi-demand assignment and planning in unknown environments. Our motivation is disaster response and search-and-rescue scenarios where ground vehicles must reach demand locations as soon as possible. We consider a setting where the terrain information is available only in the form of an aerial, georeferenced image. Deep learning techniques can be used for semantic segmentation of the aerial image to create a cost map for safe ground robot navigation. Such segmentation may still be noisy. Hence, we present a joint planning and perception framework that accounts for the risk introduced due to noisy perception. Our contributions are two-fold: (i) we show how to use Bayesian deep learning techniques to extract risk at the perception level; and (ii) use a risk-theoretical measure, CVaR, for risk-aware planning and assignment. The pipeline is theoretically established, then empirically analyzed through two datasets. We find that accounting for risk at both levels produces quantifiably safer paths and assignments

    Perception-Based Temporal Logic Planning in Uncertain Semantic Maps

    Full text link
    This paper addresses a multi-robot planning problem in partially unknown semantic environments. The environment is assumed to have known geometric structure (e.g., walls) and to be occupied by static labeled landmarks with uncertain positions and classes. This modeling approach gives rise to an uncertain semantic map generated by semantic SLAM algorithms. Our goal is to design control policies for robots equipped with noisy perception systems so that they can accomplish collaborative tasks captured by global temporal logic specifications. To account for environmental and perceptual uncertainty, we extend a fragment of Linear Temporal Logic (LTL), called co-safe LTL, by including perception-based atomic predicates allowing us to incorporate uncertainty-wise and probabilistic satisfaction requirements directly into the task specification. The perception-based LTL planning problem gives rise to an optimal control problem, solved by a novel sampling-based algorithm, that generates open-loop control policies that are updated online to adapt to a continuously learned semantic map. We provide extensive experiments to demonstrate the efficiency of the proposed planning architecture
    corecore