3 research outputs found

    Optimal Targeting and Contract Offering for Load Curtailment in Nega-Watt Markets

    No full text

    Optimal Planning and Operation of AC-DC Hybrid Distribution Systems

    Get PDF
    Recent years have been marked by a significant increase in interest in green technologies, which have led to radical changes in the way electric power is generated and utilized. These changes have been accompanied by greater utilization of DC-based distributed generators (DGs), such as photovoltaic (PV) panels and fuel cells, as well as DC-based load demands, such as electric vehicles (EVs) and modern electronic loads. In addition to accommodating these technologies, future distribution systems (DSs) will also need to support the integration of additional battery storage systems with renewable DGs. A further factor is the number of policies that have been implemented in Ontario, Canada, with the goal of encouraging the use of clean energy. The first, the feed-in-tariff (FIT) program, was introduced to promote the application of renewable DGs, including PV panels and wind DGs, and a second, new program that offers incentives for switching to EVs has been announced recently. The result is that future DSs must include additional DC loads and DC-based DGs along with their present AC loads and energy resources. Future DSs should thus become AC-DC hybrids if they are to provide optimal accommodation of all types of AC and DC loads and DGs. These considerations accentuate the need for reliable techniques appropriate for the planning and operation of future hybrid DSs. This thesis presents new directions for the planning and operation of AC-DC hybrid DSs. The main target of the research presented in this thesis is to optimally accommodate the expected high penetration of DC loads and DC-based DGs in future DSs. Achieving this target entailed the completion of four consecutive parts: 1) developing a unified load flow (LF) model for AC-DC hybrid DSs, 2) introducing an energy management scheme (EMS) for the optimal operation of AC-DC hybrid DSs, 3) introducing a planning model to determine the optimal AC-DC network configuration that minimizes the costs of the hybrid DS, and 4) developing a reliability-based planning technique for the simultaneous optimization of the DS costs and reliability. The first part of this research introduces a novel unified LF model for AC-DC hybrid DSs. The LF model can be applied in hybrid DSs with a variety of configurations for AC/DC buses and AC/DC lines. A new classification of DS buses is introduced for LF analysis. Three binary matrices, which are used as a means of describing the configuration of the AC and DC buses and lines, have been employed in the construction of the unified power equations. The LF model is generic and can be used for both grid-connected and isolated hybrid DSs. The new model has been tested using several case studies of hybrid DSs that include different operational modes for the AC and DC DGs. The effectiveness and accuracy of the developed LF model has been verified against the steady-state solution produced by PSCAD/EMTDC software. The second part presents a two-stage EMS that can achieve optimal and reliable operation for AC-DC hybrid DSs. The first stage introduces a network reconfiguration algorithm to determine the optimal day-ahead reconfiguration schedule for a hybrid DS, while considering the forecasted data for load demands and renewable DGs. The objective of the reconfiguration algorithm is the minimization of DS energy losses. The second stage introduces a real-time optimal power flow (OPF) algorithm that minimizes the DS operation costs. In addition, a load-curtailment-management (LCM) technique is integrated with the OPF algorithm in order to guarantee optimal and reliable DS operation in the case of abnormal operating conditions. The third part presents a novel stochastic planning model for AC-DC hybrid DSs. Taking into account the possibility of each line/bus being AC or DC, the model finds the optimal AC-DC hybrid configuration of buses and lines in the DS. It incorporates consideration of the stochastic behavior of load demands and renewable DGs. The stochastic variations are addressed using a Monte-Carlo simulation (MCS). The objective of the planning model is the minimization of DS investment and operation costs. The developed planning model has been employed for finding the optimal configuration for a suggested case study that included PV panels, wind DGs, and EV charging stations. The same case study was also solved using a traditional AC planning technique in order to evaluate the effectiveness of the hybrid planning model and the associated cost-savings. The last part of this research introduces a stochastic multi-objective optimization model for the planning of AC-DC hybrid DSs. The introduced model determines the optimal AC-DC network configuration that achieves two objectives: 1) minimizing system costs, and 2) maximizing system reliability. Network buses and lines can become either AC or DC in order to achieve the planning objectives. The model features an MCS technique for addressing stochastic variations related to load demands and renewable DGs. The developed model has been tested using a case study involving a hybrid DS that included a variety of types of loads and DGs. Solving the same case study using a traditional AC planning technique provided verification of the benefits offered by the developed model, whose efficacy was confirmed through a comparison of the AC and hybrid Pareto fronts. The developed planning framework represents an effective technique that can be used by DS operators to identify the optimal AC-DC network configuration of future hybrid DSs

    Transforming electrical energy systems towards sustainability in a complex world: the cases of Ontario and Costa Rica

    Get PDF
    Electrical energy systems have been major contributors to sustainability-associated effects, positive and negative, and therefore are considered as key components in pursuing overall sustainability objectives. Conventional electrical energy systems have delivered essential services for human well-being and can play a key role in tackling ongoing threats including growing poverty, climate change effects, and the long-term impacts of the COVID-19 pandemic. At the same time, some participants in electrical energy systems at national and local scales have stressed that the conventional design of electrical energy systems requires change to ensure the positive contributions and to reduce socioeconomic and environmental risks. Continuing negative trends including significant contributions to climate change, rising energy costs, deepening inequities, and long-term environmental degradation, have raised concerns and prompted calls for transforming conventional electrical energy systems rapidly and safely. However, due in part to the complexity of electrical energy systems, national and local authorities have struggled to steer their systems towards delivering more consistently positive sustainability-associated effects. Usual approaches to electrical energy system management have sought to improve efficiency, reliability and capacity to meet anticipated demand. They have seldom treated electrical energy systems as potentially important contributors to overall sustainability in principle and in practice. Doing so would entail recognizing electrical energy systems as complex systems with interlinked effects and aiming to maximize the systems’ positive and transformative effects to deliver multiple, mutually reinforcing and overall sustainability gains. The research reported here considered whether and how sustainability-based assessments can be useful tools to fill this gap and advance sustainability objectives in particular plans, projects, and initiatives carried out in electrical energy systems. To aid in responding the main research questions, this dissertation builds and proposes a sustainability-based assessment framework for electrical energy systems that is suitable for application with further specification to the context of different jurisdictions. Use of the framework is illustrated and tested through two case applications – to the electrical energy systems of Ontario and Costa Rica. Building the proposed framework involved a literature review and synthesis of three foundational bodies of knowledge: sustainability in complexity, electrical energy systems and sustainability, and transformations towards sustainability. Further specifying and applying the framework to the context of the two case studies involved carrying out document research and semi-structured interviews with key participants in the electrical energy systems of the two jurisdictions. The resulting sustainability-based assessment framework from this dissertation proposes six main criteria categories that are mutually reinforcing and emphasize minimizing trade-offs scenarios. These are divided into a set of criteria for specification and application to electrical energy system-related projects, plans, and initiatives in different regions. The proposed criteria categories are 1) Climate safety and social-ecological integrity; 2) Intra- and inter-generational equity, accessibility, reliability, and affordability; 3) Cost-effectiveness, resource efficiency and conservation; 4) Democratic and participatory governance; 5) Precaution, modularity and resiliency; and 6) Transformation, integration of multiple positive effects, and minimization of adverse effects. Ontario’s electrical energy system has significant sustainability-related challenges to overcome. The case study has shown that there is little provincial interest in following national net-zero commitments and authorities have removed official requirements for long-term energy planning to pursue climate goals and related sustainability objectives. Rising electricity prices have also raised concerns for many years and have been accompanied by limited willingness to engage in democratic and participatory processes for public review of electrical energy system undertakings. Additionally, recent commitments to highly expensive and risky options can further aggravate long-term socioeconomic and environmental negative impacts. In the Costa Rica case, adopting technocentric approaches to electrical energy system management led to a path dependency on large hydroelectricity development. This background of development of large hydroelectricity projects, without public consultation, has also created a sustained context of tension between governments, Indigenous groups and local communities, and private actors. Since the country is expected to experience changes in natural systems’ patterns including intensified periods of hurricane, storm, flood, and drought, the strong reliance on hydroelectricity has at the same time raised concerns regarding the reliability of the national electrical energy system. Both Ontario and Costa Rica have electrical energy systems that require rapid responses to contribute more positively to sustainability, and to help to reduce and reverse ongoing social and environmental crises. The two cases are also suitably contrasting venues for specification and application of the sustainability-based assessment framework developed in this work. The findings showed that while Ontario and Costa Rica have different contextual characteristics (e.g., geographical, socioeconomic, and political), overall lessons can be learned for best designing electrical energy systems in different jurisdictions. The findings also revealed that context-specific sustainability approaches do not necessarily undermine the viability for comparing multiple cases. In fact, specification to context can support comparisons by facilitating the identification of similarities and differences that are closely tied to contextual characteristics. Overall, the study of the two cases indicates significant potential for future works that focus on the specification to context and application of sustainability-based assessments specified to electrical energy systems that seek for barriers and opportunities for unlocking transformative effects. Three key learnings were revealed by building, specifying to context, and applying the sustainability-based assessment framework in a comparative analysis of the electrical energy systems of Ontario and Costa Rica. First, the two jurisdictions require implementation of more effective options to minimize costs in electrical energy system operations and avoid economic risks that undermine the capacity of the system to provide affordable electricity for all. Second, efforts to meet democratic and participatory governance requirements have been insufficient in Ontario and Costa Rica. Both jurisdictions need to demonstrate the capacity to respect official processes for public approval and to ensure adequate representation of different actors’ interests. Particularly, Indigenous people, local communities, and other groups with limited influence need more meaningful inclusion in official decision-making. Third, the two jurisdictions would benefit from implementing strategies to identify and assess possible combinations of policy and technical pathways that could help to unlock an existing dependency on options that support system rigidity. The core overall conclusion is that application of the proposed sustainability-based assessment framework can inform better design electrical energy systems to deliver broader sustainability-related effects and advance transformations towards sustainability. However, the framework could be further developed by including insights from more key participants in electrical energy systems. The criteria set can be honed with specification to context and application to different jurisdictions, and to more particular initiatives that reflect evolving energy scenarios. Inclusion of transformation, integration of multiple positive effects, and minimization of adverse effects as a criteria category has been helpful to recognize political contexts, promote just transitions, and emphasize the interlinked effects of applying the rest of the criteria. Since this is a new component in sustainability-based assessment frameworks, the transformation criteria category will require particular attention in future applications. Among other matters, further work in the field of electrical energy systems transformation towards sustainability should also address continuing and emerging phenomena, including adverse political trends such as right-wing populism and post-truth politics, that would maintain gaps between current practices and the steps needed for progress towards sustainability. Generally, however, while there are many needs and opportunities for more applications of the framework and additional research into the barriers to and openings for energy system transition and transformation, the sustainability-based assessment framework proposed and tested in this dissertation research should be a useful tool for directing change in complex electrical energy systems towards broader contributions to sustainability
    corecore