3 research outputs found

    Optimal Multi-view Correction of Local Affine Frames

    Get PDF
    The technique requires the epipolar geometry to be pre-estimated between each image pair. It exploits the constraints which the camera movement implies, in order to apply a closed-form correction to the parameters of the input affinities. Also, it is shown that the rotations and scales obtained by partially affine-covariant detectors, e.g., AKAZE or SIFT, can be completed to be full affine frames by the proposed algorithm. It is validated both in synthetic experiments and on publicly available real-world datasets that the method always improves the output of the evaluated affine-covariant feature detectors. As a by-product, these detectors are compared and the ones obtaining the most accurate affine frames are reported. For demonstrating the applicability, we show that the proposed technique as a pre-processing step improves the accuracy of pose estimation for a camera rig, surface normal and homography estimation

    Optimal surface normal from affine transformation

    No full text
    This paper deals with surface normal estimation from calibrated stereo images. We show here how the affine transformation between two projections defines the surface normal of a 3D planar patch. We give a formula that describes the relationship of surface normals, camera projections, and affine transformations. This formula is general since it works for every kind of cameras. We propose novel methods for estimating the normal of a surface patch if the affine transformation is known between two perspective images. We show here that the normal vector can be optimally estimated if the projective depth of the patch is known. Other non-optimal methods are also introduced for the problem. The proposed methods are tested both on synthesized data and images of real-world 3D objects
    corecore