87 research outputs found

    Spatially partitioned embedded Runge-Kutta Methods

    Get PDF
    We study spatially partitioned embedded Runge–Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in non-embedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to non-physical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted non-oscillatory (WENO) spatial discretizations. Numerical experiments are provided to support the theory

    Effective order strong stability preserving Runge–Kutta methods

    Get PDF
    We apply the concept of effective order to strong stability preserving (SSP) explicit Runge–Kutta methods. Relative to classical Runge–Kutta methods, effective order methods are designed to satisfy a relaxed set of order conditions, but yield higher order accuracy when composed with special starting and stopping methods. The relaxed order conditions allow for greater freedom in the design of effective order methods. We show that this allows the construction of four-stage SSP methods with effective order four (such methods cannot have classical order four). However, we also prove that effective order five methods—like classical order five methods—require the use of non-positive weights and so cannot be SSP. By numerical optimization, we construct explicit SSP Runge–Kutta methods up to effective order four and establish the optimality of many of them. Numerical experiments demonstrate the validity of these methods in practice

    Strong stability preserving explicit Runge-Kutta methods of maximal effective order

    Full text link
    We apply the concept of effective order to strong stability preserving (SSP) explicit Runge-Kutta methods. Relative to classical Runge-Kutta methods, methods with an effective order of accuracy are designed to satisfy a relaxed set of order conditions, but yield higher order accuracy when composed with special starting and stopping methods. We show that this allows the construction of four-stage SSP methods with effective order four (such methods cannot have classical order four). However, we also prove that effective order five methods - like classical order five methods - require the use of non-positive weights and so cannot be SSP. By numerical optimization, we construct explicit SSP Runge-Kutta methods up to effective order four and establish the optimality of many of them. Numerical experiments demonstrate the validity of these methods in practice.Comment: 17 pages, 3 figures, 8 table
    • …
    corecore