21,701 research outputs found

    Accounting for Uncertainty Affecting Technical Change in an Economic-Climate Model

    Get PDF
    The key role of technological change in the decline of energy and carbon intensities of aggregate economic activities is widely recognized. This has focused attention on the issue of developing endogenous models for the evolution of technological change. With a few exceptions this is done using a deterministic framework, even though technological change is a dynamic process which is uncertain by nature. Indeed, the two main vectors through which technological change may be conceptualized, learning through R&D investments and learning-by-doing, both evolve and cumulate in a stochastic manner. How misleading are climate strategies designed without accounting for such uncertainty? The main idea underlying the present piece of research is to assess and discuss the effect of endogenizing this uncertainty on optimal R&D investment trajectories and carbon emission abatement strategies. In order to do so, we use an implicit stochastic programming version of the FEEM-RICE model, first described in Bosetti, Carraro and Galeotti, (2005). The comparative advantage of taking a stochastic programming approach is estimated using as benchmarks the expected-value approach and the worst-case scenario approach. It appears that, accounting for uncertainty and irreversibility would affect both the optimal level of investment in R&D –which should be higher– and emission reductions –which should be contained in the early periods. Indeed, waiting and investing in R&D appears to be the most cost-effective hedging strategy.Stochastic Programming, Uncertainty and Learning, Endogenous Technical Change

    Risk-Neutral Pricing of Financial Instruments in Emission Markets: A Structural Approach

    Full text link
    We present a novel approach to the pricing of financial instruments in emission markets, for example, the EU ETS. The proposed structural model is positioned between existing complex full equilibrium models and pure reduced form models. Using an exogenously specified demand for a polluting good it gives a causal explanation for the accumulation of CO2 emissions and takes into account the feedback effect from the cost of carbon to the rate at which the market emits CO2. We derive a forward-backward stochastic differential equation for the price process of the allowance certificate and solve the associated semilinear partial differential equation numerically. We also show that derivatives written on the allowance certificate satisfy a linear partial differential equation. The model is extended to emission markets with multiple compliance periods and we analyse the impact different intertemporal connecting mechanisms, such as borrowing, banking and withdrawal, have on the allowance price.Comment: Section 5 in this version is new and contains an asymptotic analysis of the problem under consideratio

    The valuation of power futures based on optimal dispatch

    Get PDF
    The pricing of contingent claims in the wholesale power market is a controversial topic. Important challenges come from the non-storability of electricity and the number of parameters that impact the market. We propose an equilibrium model based on the fundamentals of power generation. In a perfect competitive market, spot electricity prices are determined by the marginal cost of producing the last unit of power. Electricity can be viewed as a derivative of demand, fuels prices and carbon emission price. We extend the Pirrong-Jermakayan model such as to incorporate the main factors driving the marginal cost and the non-linearities of electricity prices with respect to fuels prices. As in the Pirrong-Jermakayan framework, any contingent claims on power must satisfy a high dimensional PDE that embeds a market price of risk, as load is not a traded asset. Analyzing the specificity of the marginal cost in power market, we simplify the problem for evaluating power futures so that it becomes computationally tractable. We test our model on the German EEX for "German Month Futures" with maturity of June and September 2008.power contingent claims, PDE valuation of financial derivatives, unit commitment, market price of risk, EEX

    Delayed Action and Uncertain Targets. How Much Will Climate Policy Cost?

    Get PDF
    Despite the growing concern about actual on-going climate change, there is little consensus about the scale and timing of actions needed to stabilise the concentrations of greenhouse gases. Many countries are unwilling to implement effective mitigation strategies, at least in the short-term, and no agreement on an ambitious global stabilisation target has yet been reached. It is thus likely that some, if not all countries, will delay the adoption of effective climate policies. This delay will affect the cost of future policy measures that will be required to abate an even larger amount of emissions. What additional economic cost of mitigation measures will this delay imply? At the same time, the uncertainty surrounding the global stabilisation target to be achieved crucially affects short-term investment and policy decisions. What will this uncertainty cost? Is there a hedging strategy that decision makers can adopt to cope with delayed action and uncertain targets? This paper addresses these questions by quantifying the economic implications of delayed mitigation action, and by computing the optimal abatement strategy in the presence of uncertainty about a global stabilisation target (which will be agreed upon in future climate negotiations). Results point to short-term inaction as the key determinant for the economic costs of ambitious climate policies. They also indicate that there is an effective hedging strategy that could minimise the cost of climate policy under uncertainty, and that a short-term moderate climate policy would be a good strategy to reduce the costs of delayed action and to cope with uncertainty about the outcome of future climate negotiations. By contrast, an insufficient short-term effort significantly increases the costs of compliance in the long-term.Uncertainty, Climate Policy, Stabilisation Costs, Delayed Action

    Precautionary Effect and Variations of the Value of Information

    Get PDF
    For a sequential, two-period decision problem with uncertainty and under broad conditions (non-finite sample set, endogenous risk, active learning and stochastic dynamics), a general sufficient condition is provided to compare the optimal initial decisions with or without information arrival in the second period. More generally the condition enables the comparison of optimal decisions related to different information structures. It also ties together and clarifies many conditions for the so-called irreversibility effect that are scattered in the environmental economics literature. A numerical illustration with an integrated assessment model of climate-change economics is provided.Value of Information, Uncertainty, Irreversibility effect, Climate change

    Inducing Low-Carbon Investment in the Electric Power Industry through a Price Floor for Emissions Trading

    Get PDF
    Uncertainty about long-term climate policy is a major driving force in the evolution of the carbon market price. Since this price enters the investment decision process of regulated firms, this uncertainty increases the cost of capital for investors and might deter invest-ments into new technologies at the company level. We apply a real options-based approach to assess the impact of climate change policy in the form of a constant or growing price floor on investment decisions of a single firm in a competitive environment. This firm has the opportunity to switch from a high-carbon “dirty” technology to a low-carbon “clean” technology. Using Monte Carlo simulation and dynamic programming techniques for real market data, we determine the optimal CO2 price floor level and growth rate in order to induce investments into the low-carbon technology. We show these findings to be robust to a large variety of input parameter settings.Carbon price, price floor, technological change, investment decision, real option approach
    corecore