3,971 research outputs found

    Dynamic Resource Allocation in Cognitive Radio Networks: A Convex Optimization Perspective

    Full text link
    This article provides an overview of the state-of-art results on communication resource allocation over space, time, and frequency for emerging cognitive radio (CR) wireless networks. Focusing on the interference-power/interference-temperature (IT) constraint approach for CRs to protect primary radio transmissions, many new and challenging problems regarding the design of CR systems are formulated, and some of the corresponding solutions are shown to be obtainable by restructuring some classic results known for traditional (non-CR) wireless networks. It is demonstrated that convex optimization plays an essential role in solving these problems, in a both rigorous and efficient way. Promising research directions on interference management for CR and other related multiuser communication systems are discussed.Comment: to appear in IEEE Signal Processing Magazine, special issue on convex optimization for signal processin

    Physical-Layer Security with Multiuser Scheduling in Cognitive Radio Networks

    Full text link
    In this paper, we consider a cognitive radio network that consists of one cognitive base station (CBS) and multiple cognitive users (CUs) in the presence of multiple eavesdroppers, where CUs transmit their data packets to CBS under a primary user's quality of service (QoS) constraint while the eavesdroppers attempt to intercept the cognitive transmissions from CUs to CBS. We investigate the physical-layer security against eavesdropping attacks in the cognitive radio network and propose the user scheduling scheme to achieve multiuser diversity for improving the security level of cognitive transmissions with a primary QoS constraint. Specifically, a cognitive user (CU) that satisfies the primary QoS requirement and maximizes the achievable secrecy rate of cognitive transmissions is scheduled to transmit its data packet. For the comparison purpose, we also examine the traditional multiuser scheduling and the artificial noise schemes. We analyze the achievable secrecy rate and intercept probability of the traditional and proposed multiuser scheduling schemes as well as the artificial noise scheme in Rayleigh fading environments. Numerical results show that given a primary QoS constraint, the proposed multiuser scheduling scheme generally outperforms the traditional multiuser scheduling and the artificial noise schemes in terms of the achievable secrecy rate and intercept probability. In addition, we derive the diversity order of the proposed multiuser scheduling scheme through an asymptotic intercept probability analysis and prove that the full diversity is obtained by using the proposed multiuser scheduling.Comment: 12 pages. IEEE Transactions on Communications, 201

    Robust Spectrum Sharing via Worst Case Approach

    Full text link
    This paper considers non-cooperative and fully-distributed power-allocation for secondary-users (SUs) in spectrum-sharing environments when normalized-interference to each secondary-user is uncertain. We model each uncertain parameter by the sum of its nominal (estimated) value and a bounded additive error in a convex set, and show that the allocated power always converges to its equilibrium, called robust Nash equilibrium (RNE). In the case of a bounded and symmetric uncertainty set, we show that the power allocation problem for each SU is simplified, and can be solved in a distributed manner. We derive the conditions for RNE's uniqueness and for convergence of the distributed algorithm; and show that the total throughput (social utility) is less than that at NE when RNE is unique. We also show that for multiple RNEs, the the social utility may be higher at a RNE as compared to that at the corresponding NE, and demonstrate that this is caused by SUs' orthogonal utilization of bandwidth for increasing the social utility. Simulations confirm our analysis
    • …
    corecore