279 research outputs found

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    2D Qubit Placement of Quantum Circuits using LONGPATH

    Full text link
    In order to achieve speedup over conventional classical computing for finding solution of computationally hard problems, quantum computing was introduced. Quantum algorithms can be simulated in a pseudo quantum environment, but implementation involves realization of quantum circuits through physical synthesis of quantum gates. This requires decomposition of complex quantum gates into a cascade of simple one qubit and two qubit gates. The methodological framework for physical synthesis imposes a constraint regarding placement of operands (qubits) and operators. If physical qubits can be placed on a grid, where each node of the grid represents a qubit then quantum gates can only be operated on adjacent qubits, otherwise SWAP gates must be inserted to convert non-Linear Nearest Neighbor architecture to Linear Nearest Neighbor architecture. Insertion of SWAP gates should be made optimal to reduce cumulative cost of physical implementation. A schedule layout generation is required for placement and routing apriori to actual implementation. In this paper, two algorithms are proposed to optimize the number of SWAP gates in any arbitrary quantum circuit. The first algorithm is intended to start with generation of an interaction graph followed by finding the longest path starting from the node with maximum degree. The second algorithm optimizes the number of SWAP gates between any pair of non-neighbouring qubits. Our proposed approach has a significant reduction in number of SWAP gates in 1D and 2D NTC architecture.Comment: Advanced Computing and Systems for Security, SpringerLink, Volume 1

    Depth-Optimized Reversible Circuit Synthesis

    Full text link
    In this paper, simultaneous reduction of circuit depth and synthesis cost of reversible circuits in quantum technologies with limited interaction is addressed. We developed a cycle-based synthesis algorithm which uses negative controls and limited distance between gate lines. To improve circuit depth, a new parallel structure is introduced in which before synthesis a set of disjoint cycles are extracted from the input specification and distributed into some subsets. The cycles of each subset are synthesized independently on different sets of ancillae. Accordingly, each disjoint set can be synthesized by different synthesis methods. Our analysis shows that the best worst-case synthesis cost of reversible circuits in the linear nearest neighbor architecture is improved by the proposed approach. Our experimental results reveal the effectiveness of the proposed approach to reduce cost and circuit depth for several benchmarks.Comment: 13 pages, 6 figures, 5 tables; Quantum Information Processing (QINP) journal, 201
    corecore