2,919 research outputs found

    Improving Pan-African research and education networks through traffic engineering: A LISP/SDN approach

    Get PDF
    The UbuntuNet Alliance, a consortium of National Research and Education Networks (NRENs) runs an exclusive data network for education and research in east and southern Africa. Despite a high degree of route redundancy in the Alliance's topology, a large portion of Internet traffic between the NRENs is circuitously routed through Europe. This thesis proposes a performance-based strategy for dynamic ranking of inter-NREN paths to reduce latencies. The thesis makes two contributions: firstly, mapping Africa's inter-NREN topology and quantifying the extent and impact of circuitous routing; and, secondly, a dynamic traffic engineering scheme based on Software Defined Networking (SDN), Locator/Identifier Separation Protocol (LISP) and Reinforcement Learning. To quantify the extent and impact of circuitous routing among Africa's NRENs, active topology discovery was conducted. Traceroute results showed that up to 75% of traffic from African sources to African NRENs went through inter-continental routes and experienced much higher latencies than that of traffic routed within Africa. An efficient mechanism for topology discovery was implemented by incorporating prior knowledge of overlapping paths to minimize redundancy during measurements. Evaluation of the network probing mechanism showed a 47% reduction in packets required to complete measurements. An interactive geospatial topology visualization tool was designed to evaluate how NREN stakeholders could identify routes between NRENs. Usability evaluation showed that users were able to identify routes with an accuracy level of 68%. NRENs are faced with at least three problems to optimize traffic engineering, namely: how to discover alternate end-to-end paths; how to measure and monitor performance of different paths; and how to reconfigure alternate end-to-end paths. This work designed and evaluated a traffic engineering mechanism for dynamic discovery and configuration of alternate inter-NREN paths using SDN, LISP and Reinforcement Learning. A LISP/SDN based traffic engineering mechanism was designed to enable NRENs to dynamically rank alternate gateways. Emulation-based evaluation of the mechanism showed that dynamic path ranking was able to achieve 20% lower latencies compared to the default static path selection. SDN and Reinforcement Learning were used to enable dynamic packet forwarding in a multipath environment, through hop-by-hop ranking of alternate links based on latency and available bandwidth. The solution achieved minimum latencies with significant increases in aggregate throughput compared to static single path packet forwarding. Overall, this thesis provides evidence that integration of LISP, SDN and Reinforcement Learning, as well as ranking and dynamic configuration of paths could help Africa's NRENs to minimise latencies and to achieve better throughputs

    Deflection routing in slotted self-routing networks with arbitrary topology

    Get PDF
    A deflection routing algorithm that can be applied to a novel self-routing address scheme for networks with arbitrary topology is proposed. The proposed deflection routing algorithm can be implemented all-optically using bitwise optical logic gates. Besides the primary output link selection, alternate output link choices by a packet at each node in case of deflection are also encoded in the address header. Priority classes can also be defined in the proposed address scheme. The performance of the deflection routing algorithm is studied using the AT&T North America OC-48 optical fiber network topology.published_or_final_versio

    Fully automated urban traffic system

    Get PDF
    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible

    Delay Tolerant Networking over the Metropolitan Public Transportation

    Get PDF
    We discuss MDTN: a delay tolerant application platform built on top of the Public Transportation System (PTS) and able to provide service access while exploiting opportunistic connectivity. Our solution adopts a carrier-based approach where buses act as data collectors for user requests requiring Internet access. Simulations based on real maps and PTS routes with state-of-the-art routing protocols demonstrate that MDTN represents a viable solution for elastic nonreal-time service delivery. Nevertheless, performance indexes of the considered routing policies show that there is no golden rule for optimal performance and a tailored routing strategy is required for each specific case

    Performance of Meshed Tree Protocols for Loop Avoidance in Switched Networks

    Get PDF
    Loop free frame forwarding in layer 2 switched networks that use meshed topologies to provision for link and path redundancy is a continuing challenge. The challenge is addressed through special protocols at layer 2 that build logical trees over the physically meshed topologies, along which frames can be forwarded. The first such protocol was based on the spanning tree. The spanning tree protocol (STP) had high convergence times subsequent to topology changes. Rapid STP and IETF RFC 5556 Transparent Interconnection of Lots of Links (TRILL) on Router Bridges (RBridges) were then developed to reduce the convergence times. RSTP cntinued to use the spanning tree while TRILL adopted link state routing to support a tree from every switch. TRILL introduces high processing complexity into layer 2 networks. In this article a new meshed tree algorithm (MTA) and a loop avoidance protocol based on the MTA, namely the meshed tree protocol (MTP) are discussed. The MTA allows constructing several overlapping trees from a single root switch. This speeds up convergence to link failures. The MTP proposes a simple numbering scheme to implement meshed trees – thus, the processing complexity is low. The specification for the MTP is currently an ongoing IEEE standard Project 1910.1. In this article the operational details of MTP are presented and its performance evaluated and compared with RSTP

    On the Dynamics of Human Proximity for Data Diffusion in Ad-Hoc Networks

    Full text link
    We report on a data-driven investigation aimed at understanding the dynamics of message spreading in a real-world dynamical network of human proximity. We use data collected by means of a proximity-sensing network of wearable sensors that we deployed at three different social gatherings, simultaneously involving several hundred individuals. We simulate a message spreading process over the recorded proximity network, focusing on both the topological and the temporal properties. We show that by using an appropriate technique to deal with the temporal heterogeneity of proximity events, a universal statistical pattern emerges for the delivery times of messages, robust across all the data sets. Our results are useful to set constraints for generic processes of data dissemination, as well as to validate established models of human mobility and proximity that are frequently used to simulate realistic behaviors.Comment: A. Panisson et al., On the dynamics of human proximity for data diffusion in ad-hoc networks, Ad Hoc Netw. (2011

    Measuring The Evolving Internet Ecosystem With Exchange Points

    Get PDF
    The Internet ecosystem comprising of thousands of Autonomous Systems (ASes) now include Internet eXchange Points (IXPs) as another critical component in the infrastructure. Peering plays a significant part in driving the economic growth of ASes and is contributing to a variety of structural changes in the Internet. IXPs are a primary component of this peering ecosystem and are playing an increasing role not only in the topology evolution of the Internet but also inter-domain path routing. In this dissertation we study and analyze the overall affects of peering and IXP infrastructure on the Internet. We observe IXP peering is enabling a quicker flattening of the Internet topology and leading to over-utilization of popular inter-AS links. Indiscriminate peering at these locations is leading to higher endto-end path latencies for ASes peering at an exchange point, an effect magnified at the most popular worldwide IXPs. We first study the effects of recently discovered IXP links on the inter-AS routes using graph based approaches and find that it points towards the changing and flattening landscape in the evolution of the Internet’s topology. We then study more IXP effects by using measurements to investigate the networks benefits of peering. We propose and implement a measurement framework which identifies default paths through IXPs and compares them with alternate paths isolating the IXP hop. Our system is running and recording default and alternate path latencies and made publicly available. We model the probability of an alternate path performing better than a default path through an IXP iii by identifying the underlying factors influencing the end-to end path latency. Our firstof-its-kind modeling study, which uses a combination of statistical and machine learning approaches, shows that path latencies depend on the popularity of the particular IXP, the size of the provider ASes of the networks peering at common locations and the relative position of the IXP hop along the path. An in-depth comparison of end-to-end path latencies reveal a significant percentage of alternate paths outperforming the default route through an IXP. This characteristic of higher path latencies is magnified in the popular continental exchanges as measured by us in a case study looking at the largest regional IXPs. We continue by studying another effect of peering which has numerous applications in overlay routing, Triangle Inequality Violations (TIVs). These TIVs in the Internet delay space are created due to peering and we compare their essential characteristics with overlay paths such as detour routes. They are identified and analyzed from existing measurement datasets but on a scale not carried out earlier. This implementation exhibits the effectiveness of GPUs in analyzing big data sets while the TIVs studied show that the a set of common inter-AS links create these TIVs. This result provides a new insight about the development of TIVs by analyzing a very large data set using GPGPUs. Overall our work presents numerous insights into the inner workings of the Internet’s peering ecosystem. Our measurements show the effects of exchange points on the evolving Internet and exhibits their importance to Internet routing
    corecore