4 research outputs found

    Location Aided Energy Balancing Strategy in Green Cellular Networks

    Full text link
    Most cellular network communication strategies are focused on data traffic scenarios rather than energy balance and efficient utilization. Thus mobile users in hot cells may suffer from low throughput due to energy loading imbalance problem. In state of art cellular network technologies, relay stations extend cell coverage and enhance signal strength for mobile users. However, busy traffic makes the relay stations in hot area run out of energy quickly. In this paper, we propose an energy balancing strategy in which the mobile nodes are able to dynamically select and hand over to the relay station with the highest potential energy capacity to resume communication. Key to the strategy is that each relay station merely maintains two parameters that contains the trend of its previous energy consumption and then predicts its future quantity of energy, which is defined as the relay station potential energy capacity. Then each mobile node can select the relay station with the highest potential energy capacity. Simulations demonstrate that our approach significantly increase the aggregate throughput and the average life time of relay stations in cellular network environment.Comment: 6 pages, 5 figures. arXiv admin note: text overlap with arXiv:1108.5493 by other author

    Optimal cross layer design for CDMA-SFBC wireless systems

    Get PDF
    The demand for high speed reliable wireless services has been rapidly growing. Wireless networks have limited resources while wireless channels suffer from fading, interference and time variations. Furthermore, wireless applications have diverse end to end quality of service (QoS) requirements. The aforementioned challenges require the design of spectrally efficient transmission systems coupled with the collaboration of the different OSI layers i.e. cross layer design. To this end, we propose a code division multiple access (CDMA)-space frequency block coded (SFBC) systems for both uplink and downlink transmissions. The proposed systems exploit code, frequency and spatial diversities to improve reception. Furthermore, we derive closed form expressions for the average bit error rate of the proposed systems. In this thesis, we also propose a cross layer resource allocation algorithm for star CDMA-SFBC wireless networks. The proposed resource allocation algorithm assigns base transceiver stations (BTS), antenna arrays and frequency bands to users based on their locations such that their pair wise channel cross correlation is minimized while each user is assigned channels with maximum coherence time. The cooperation between the medium access control (MAC) and physical layers as applied by the optimized resource allocation algorithm improves the bit error rate of the users and the spectral efficiency of the network. A joint cross layer routing and resource allocation algorithm for multi radio CDMA-SFBC wireless mesh networks is also proposed in this thesis. The proposed cross layer algorithm assigns frequency bands to links to minimize the interference and channel estimation errors experienced by those links. Channel estimation errors are minimized by selecting channels with maximum coherence time. On top, the optimization algorithm routes network traffic such that the average end to end packet delay is minimized while avoiding links with high interference and short coherence time. The cooperation between physical, MAC and network layers as applied by the optimization algorithm provides noticeable improvements in average end to end packet delay and success rat

    Optimal resource management in wireless multimedia wideband CDMA systems

    No full text
    corecore