2 research outputs found

    Optimal Resource Allocation for Wireless Powered Mobile Edge Computing with Dynamic Task Arrivals

    Full text link
    This paper considers a wireless powered multiuser mobile edge computing (MEC) system, where a multi-antenna access point (AP) employs the radio-frequency (RF) signal based wireless power transfer (WPT) to charge a number of distributed users, and each user utilizes the harvested energy to execute computation tasks via local computing and task offloading. We consider the frequency division multiple access (FDMA) protocol to support simultaneous task offloading from multiple users to the AP. Different from previous works that considered one-shot optimization with static task models, we study the joint computation and wireless resource allocation optimization with dynamic task arrivals over a finite time horizon consisting of multiple slots. Under this setup, our objective is to minimize the system energy consumption including the AP's transmission energy and the MEC server's computing energy over the whole horizon, by jointly optimizing the transmit energy beamforming at the AP, and the local computing and task offloading strategies at the users over different time slots. To characterize the fundamental performance limit of such systems, we focus on the offline optimization by assuming the task and channel information are known a-priori at the AP. In this case, the energy minimization problem corresponds to a convex optimization problem. Leveraging the Lagrange duality method, we obtain the optimal solution to this problem in a well structure. It is shown that in order to maximize the system energy efficiency, the optimal number of task input-bits at each user and the AP are monotonically increasing over time, and the offloading strategies at different users depend on both the wireless channel conditions and the task load at the AP. Numerical results demonstrate the benefit of the proposed joint-WPT-MEC design over alternative benchmark schemes without such joint design.Comment: 7 pages, 3 figures, and Accepted by IEEE ICC 2019, Shanghai, Chin

    Optimal Energy Allocation and Task Offloading Policy for Wireless Powered Mobile Edge Computing Systems

    Full text link
    This paper studies a wireless powered mobile edge computing (MEC) system with fluctuating channels and dynamic task arrivals over time. We jointly optimize the transmission energy allocation at the energy transmitter (ET) for WPT and the task allocation at the user for local computing and offloading over a particular finite horizon, with the objective of minimizing the total transmission energy consumption at the ET while ensuring the user's successful task execution. First, in order to characterize the fundamental performance limit, we consider the offline optimization by assuming that the perfect knowledge of channel state information and task state information (i.e., task arrival timing and amounts) is known a-priori. In this case, we obtain the well-structured optimal solution in a closed form to the energy minimization problem via convex optimization techniques. Next, inspired by the structured offline solutions obtained above, we develop heuristic online designs for the joint energy and task allocation when the knowledge of CSI/TSI is only causally known. Finally, numerical results are provided to show that the proposed joint designs achieve significantly smaller energy consumption than benchmark schemes with only local computing or full offloading at the user, and the proposed heuristic online designs perform close to the optimal offline solutions.Comment: One-column 32 pages, 6 figures, and accepted for publication in IEEE Transactions on Wireless Communication
    corecore