10,009 research outputs found

    Remote information concentration using a bound entangled state

    Get PDF
    Remote information concentration, the reverse process of quantum telecloning, is presented. In this scheme, quantum information originally from a single qubit, but now distributed into three spatially separated qubits, is remotely concentrated back to a single qubit via an initially shared entangled state without performing any global operations. This entangled state is an unlockable bound entangled state and we analyze its properties.Comment: 4 pages, 2 figure

    Remote Preparation and Distribution of Bipartite Entangled States

    Full text link
    We prove a powerful theorem for tripartite remote entanglement distribution protocols that establishes an upper bound on the amount of entanglement of formation that can be created between two single-qubit nodes of a quantum network. Our theorem also provides an operational interpretation of concurrence as a type of entanglement capacity.Comment: 5 pages, to appear in the Physical Review Letter

    A classical analogue of entanglement

    Get PDF
    We show that quantum entanglement has a very close classical analogue, namely secret classical correlations. The fundamental analogy stems from the behavior of quantum entanglement under local operations and classical communication and the behavior of secret correlations under local operations and public communication. A large number of derived analogies follow. In particular teleportation is analogous to the one-time-pad, the concept of ``pure state'' exists in the classical domain, entanglement concentration and dilution are essentially classical secrecy protocols, and single copy entanglement manipulations have such a close classical analog that the majorization results are reproduced in the classical setting. This analogy allows one to import questions from the quantum domain into the classical one, and vice-versa, helping to get a better understanding of both. Also, by identifying classical aspects of quantum entanglement it allows one to identify those aspects of entanglement which are uniquely quantum mechanical.Comment: 13 pages, references update

    Remote transfer of Gaussian quantum discord

    Full text link
    Quantum discord quantifies quantum correlation between quantum systems, which has potential application in quantum information processing. In this paper, we propose a scheme realizing the remote transfer of Gaussian quantum discord, in which another quantum discordant state or an Einstein-Podolsky-Rosen entangled state serves as ancillary state. The calculation shows that two independent optical modes that without direct interaction become quantum correlated after the transfer. The output Gaussian quantum discord can be higher than the initial Gaussian quantum discord when optimal gain of the classical channel and the ancillary state are chosen. The physical reason for this result comes from the fact that the quantum discord of an asymmetric Gaussian quantum discordant state can be higher than that of a symmetric one. The presented scheme has potential application in quantum information network

    Family of Concurrence Monotones and its Applications

    Full text link
    We extend the definition of concurrence into a family of entanglement monotones, which we call concurrence monotones. We discuss their properties and advantages as computational manageable measures of entanglement, and show that for pure bipartite states all measures of entanglement can be written as functions of the concurrence monotones. We then show that the concurrence monotones provide bounds on quantum information tasks. As an example, we discuss their applications to remote entanglement distributions (RED) such as entanglement swapping and remote preparation of bipartite entangled states (RPBES). We prove a powerful theorem which states what kind of (possibly mixed) bipartite states or distributions of bipartite states can not be remotely prepared. The theorem establishes an upper bound on the amount of GG-concurrence (one member in the concurrence family) that can be created between two single-qudit nodes of quantum networks by means of tripartite RED. For pure bipartite states the bound on the GG-concurrence can always be saturated by RPBES.Comment: 8 page
    corecore