2,943 research outputs found

    Intelligent Reflecting Surface Aided Multigroup Multicast MISO Communication Systems

    Get PDF
    Intelligent reflecting surface (IRS) has recently been envisioned to offer unprecedented massive multiple-input multiple-output (MIMO)-like gains by deploying large-scale and low-cost passive reflection elements. By adjusting the reflection coefficients, the IRS can change the phase shifts on the impinging electromagnetic waves so that it can smartly reconfigure the signal propagation environment and enhance the power of the desired received signal or suppress the interference signal. In this paper, we consider downlink multigroup multicast communication systems assisted by an IRS. We aim for maximizing the sum rate of all the multicasting groups by the joint optimization of the precoding matrix at the base station (BS) and the reflection coefficients at the IRS under both the power and unit-modulus constraint. To tackle this non-convex problem, we propose two efficient algorithms. Specifically, a concave lower bound surrogate objective function has been derived firstly, based on which two sets of variables can be updated alternately by solving two corresponding second-order cone programming (SOCP) problems.Then, in order to reduce the computational complexity, we further adopt the majorization—minimization (MM) method for each set of variables at every iteration, and obtain the closed form solutions under loose surrogate objective functions. Finally, the simulation results demonstrate the benefits of the introduced IRS and the effectiveness of our proposed algorithms

    Spectral Efficient and Energy Aware Clustering in Cellular Networks

    Full text link
    The current and envisaged increase of cellular traffic poses new challenges to Mobile Network Operators (MNO), who must densify their Radio Access Networks (RAN) while maintaining low Capital Expenditure and Operational Expenditure to ensure long-term sustainability. In this context, this paper analyses optimal clustering solutions based on Device-to-Device (D2D) communications to mitigate partially or completely the need for MNOs to carry out extremely dense RAN deployments. Specifically, a low complexity algorithm that enables the creation of spectral efficient clusters among users from different cells, denoted as enhanced Clustering Optimization for Resources' Efficiency (eCORE) is presented. Due to the imbalance between uplink and downlink traffic, a complementary algorithm, known as Clustering algorithm for Load Balancing (CaLB), is also proposed to create non-spectral efficient clusters when they result in a capacity increase. Finally, in order to alleviate the energy overconsumption suffered by cluster heads, the Clustering Energy Efficient algorithm (CEEa) is also designed to manage the trade-off between the capacity enhancement and the early battery drain of some users. Results show that the proposed algorithms increase the network capacity and outperform existing solutions, while, at the same time, CEEa is able to handle the cluster heads energy overconsumption
    • …
    corecore