529 research outputs found

    Further Optimal Regret Bounds for Thompson Sampling

    Full text link
    Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical performance compared to the state of the art methods. In this paper, we provide a novel regret analysis for Thompson Sampling that simultaneously proves both the optimal problem-dependent bound of (1+ϵ)ilnTΔi+O(Nϵ2)(1+\epsilon)\sum_i \frac{\ln T}{\Delta_i}+O(\frac{N}{\epsilon^2}) and the first near-optimal problem-independent bound of O(NTlnT)O(\sqrt{NT\ln T}) on the expected regret of this algorithm. Our near-optimal problem-independent bound solves a COLT 2012 open problem of Chapelle and Li. The optimal problem-dependent regret bound for this problem was first proven recently by Kaufmann et al. [ALT 2012]. Our novel martingale-based analysis techniques are conceptually simple, easily extend to distributions other than the Beta distribution, and also extend to the more general contextual bandits setting [Manuscript, Agrawal and Goyal, 2012].Comment: arXiv admin note: substantial text overlap with arXiv:1111.179

    On the Prior Sensitivity of Thompson Sampling

    Full text link
    The empirically successful Thompson Sampling algorithm for stochastic bandits has drawn much interest in understanding its theoretical properties. One important benefit of the algorithm is that it allows domain knowledge to be conveniently encoded as a prior distribution to balance exploration and exploitation more effectively. While it is generally believed that the algorithm's regret is low (high) when the prior is good (bad), little is known about the exact dependence. In this paper, we fully characterize the algorithm's worst-case dependence of regret on the choice of prior, focusing on a special yet representative case. These results also provide insights into the general sensitivity of the algorithm to the choice of priors. In particular, with pp being the prior probability mass of the true reward-generating model, we prove O(T/p)O(\sqrt{T/p}) and O((1p)T)O(\sqrt{(1-p)T}) regret upper bounds for the bad- and good-prior cases, respectively, as well as \emph{matching} lower bounds. Our proofs rely on the discovery of a fundamental property of Thompson Sampling and make heavy use of martingale theory, both of which appear novel in the literature, to the best of our knowledge.Comment: Appears in the 27th International Conference on Algorithmic Learning Theory (ALT), 201

    Asymptotically Optimal Algorithms for Budgeted Multiple Play Bandits

    Get PDF
    We study a generalization of the multi-armed bandit problem with multiple plays where there is a cost associated with pulling each arm and the agent has a budget at each time that dictates how much she can expect to spend. We derive an asymptotic regret lower bound for any uniformly efficient algorithm in our setting. We then study a variant of Thompson sampling for Bernoulli rewards and a variant of KL-UCB for both single-parameter exponential families and bounded, finitely supported rewards. We show these algorithms are asymptotically optimal, both in rateand leading problem-dependent constants, including in the thick margin setting where multiple arms fall on the decision boundary

    Collaborative Learning of Stochastic Bandits over a Social Network

    Full text link
    We consider a collaborative online learning paradigm, wherein a group of agents connected through a social network are engaged in playing a stochastic multi-armed bandit game. Each time an agent takes an action, the corresponding reward is instantaneously observed by the agent, as well as its neighbours in the social network. We perform a regret analysis of various policies in this collaborative learning setting. A key finding of this paper is that natural extensions of widely-studied single agent learning policies to the network setting need not perform well in terms of regret. In particular, we identify a class of non-altruistic and individually consistent policies, and argue by deriving regret lower bounds that they are liable to suffer a large regret in the networked setting. We also show that the learning performance can be substantially improved if the agents exploit the structure of the network, and develop a simple learning algorithm based on dominating sets of the network. Specifically, we first consider a star network, which is a common motif in hierarchical social networks, and show analytically that the hub agent can be used as an information sink to expedite learning and improve the overall regret. We also derive networkwide regret bounds for the algorithm applied to general networks. We conduct numerical experiments on a variety of networks to corroborate our analytical results.Comment: 14 Pages, 6 Figure
    corecore