5,516 research outputs found
Analyzing Energy-efficiency and Route-selection of Multi-level Hierarchal Routing Protocols in WSNs
The advent and development in the field of Wireless Sensor Networks (WSNs) in
recent years has seen the growth of extremely small and low-cost sensors that
possess sensing, signal processing and wireless communication capabilities.
These sensors can be expended at a much lower cost and are capable of detecting
conditions such as temperature, sound, security or any other system. A good
protocol design should be able to scale well both in energy heterogeneous and
homogeneous environment, meet the demands of different application scenarios
and guarantee reliability. On this basis, we have compared six different
protocols of different scenarios which are presenting their own schemes of
energy minimizing, clustering and route selection in order to have more
effective communication. This research is motivated to have an insight that
which of the under consideration protocols suit well in which application and
can be a guide-line for the design of a more robust and efficient protocol.
MATLAB simulations are performed to analyze and compare the performance of
LEACH, multi-level hierarchal LEACH and multihop LEACH.Comment: NGWMN with 7th IEEE Inter- national Conference on Broadband and
  Wireless Computing, Communication and Applications (BWCCA 2012), Victoria,
  Canada, 201
A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks
This paper presents a thorough survey of recent work addressing energy
efficient multicast routing protocols and secure multicast routing protocols in
Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which
witness the need of energy management and security in ad hoc wireless networks.
The objective of a multicast routing protocol for MANETs is to support the
propagation of data from a sender to all the receivers of a multicast group
while trying to use the available bandwidth efficiently in the presence of
frequent topology changes. Multicasting can improve the efficiency of the
wireless link when sending multiple copies of messages by exploiting the
inherent broadcast property of wireless transmission. Secure multicast routing
plays a significant role in MANETs. However, offering energy efficient and
secure multicast routing is a difficult and challenging task. In recent years,
various multicast routing protocols have been proposed for MANETs. These
protocols have distinguishing features and use different mechanismsComment: 15 page
An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks
Maximizing the lifetime of wireless sensor networks (WSNs) is a challenging problem. Although some methods exist to address the problem in homogeneous WSNs, research on this problem in heterogeneous WSNs have progressed at a slow pace. Inspired by the promising performance of ant colony optimization (ACO) to solve combinatorial problems, this paper proposes an ACO-based approach that can maximize the lifetime of heterogeneous WSNs. The methodology is based on finding the maximum number of disjoint connected covers that satisfy both sensing coverage and network connectivity. A construction graph is designed with each vertex denoting the assignment of a device in a subset. Based on pheromone and heuristic information, the ants seek an optimal path on the construction graph to maximize the number of connected covers. The pheromone serves as a metaphor for the search experiences in building connected covers. The heuristic information is used to reflect the desirability of device assignments. A local search procedure is designed to further improve the search efficiency. The proposed approach has been applied to a variety of heterogeneous WSNs. The results show that the approach is effective and efficient in finding high-quality solutions for maximizing the lifetime of heterogeneous WSNs
Distributed and Load-Adaptive Self Configuration in Sensor Networks
Proactive self-configuration is crucial for MANETs such as sensor networks, as these are often deployed in hostile environments and are ad hoc in nature. The dynamic architecture of the network is monitored by exchanging so-called Network State Beacons (NSBs) between key network nodes. The Beacon Exchange rate and the network state define both the time and nature of a proactive action to combat network performance degradation at a time of crisis. It is thus essential to optimize these parameters for the dynamic load profile of the network. This paper presents a novel distributed adaptive optimization Beacon Exchange selection model which considers distributed network load for energy efficient monitoring and proactive reconfiguration of the network. The results show an improvement of 70% in throughput, while maintaining a guaranteed quality-of- service for a small control-traffic overhead
Cross-layer Balanced and Reliable Opportunistic Routing Algorithm for Mobile Ad Hoc Networks
For improving the efficiency and the reliability of the opportunistic routing
algorithm, in this paper, we propose the cross-layer and reliable opportunistic
routing algorithm (CBRT) for Mobile Ad Hoc Networks, which introduces the
improved efficiency fuzzy logic and humoral regulation inspired topology
control into the opportunistic routing algorithm. In CBRT, the inputs of the
fuzzy logic system are the relative variance (rv) of the metrics rather than
the values of the metrics, which reduces the number of fuzzy rules
dramatically. Moreover, the number of fuzzy rules does not increase when the
number of inputs increases. For reducing the control cost, in CBRT, the node
degree in the candidate relays set is a range rather than a constant number.
The nodes are divided into different categories based on their node degree in
the candidate relays set. The nodes adjust their transmission range based on
which categories that they belong to. Additionally, for investigating the
effection of the node mobility on routing performance, we propose a link
lifetime prediction algorithm which takes both the moving speed and moving
direction into account. In CBRT, the source node determines the relaying
priorities of the relaying nodes based on their utilities. The relaying node
which the utility is large will have high priority to relay the data packet. By
these innovations, the network performance in CBRT is much better than that in
ExOR, however, the computation complexity is not increased in CBRT.Comment: 14 pages, 17 figures, 31 formulas, IEEE Sensors Journal, 201
Network Lifetime Maximization With Node Admission in Wireless Multimedia Sensor Networks
Wireless multimedia sensor networks (WMSNs) are expected to support multimedia services such as delivery of video and audio streams. However, due to the relatively stringent quality-of-service (QoS) requirements of multimedia services (e.g., high transmission rates and timely delivery) and the limited wireless resources, it is possible that not all the potential sensor nodes can be admitted into the network. Thus, node admission is essential for WMSNs, which is the target of this paper. Specifically, we aim at the node admission and its interaction with power allocation and link scheduling. A cross-layer design is presented as a two-stage optimization problem, where at the first stage the number of admitted sensor nodes is maximized, and at the second stage the network lifetime is maximized. Interestingly, it is proved that the two-stage optimization problem can be converted to a one-stage optimization problem with a more compact and concise mathematical form. Numerical results demonstrate the effectiveness of the two-stage and one-stage optimization frameworks
- …
