6 research outputs found

    Optimal Randomness Extraction from a Diffie-Hellman Element

    Get PDF
    The original publication is available at www.springerlink.comInternational audienceNo abstrac

    Two-sources Randomness Extractors for Elliptic Curves

    Get PDF
    This paper studies the task of two-sources randomness extractors for elliptic curves defined over finite fields KK, where KK can be a prime or a binary field. In fact, we introduce new constructions of functions over elliptic curves which take in input two random points from two differents subgroups. In other words, for a ginven elliptic curve EE defined over a finite field Fq\mathbb{F}_q and two random points PPP \in \mathcal{P} and QQQ\in \mathcal{Q}, where P\mathcal{P} and Q\mathcal{Q} are two subgroups of E(Fq)E(\mathbb{F}_q), our function extracts the least significant bits of the abscissa of the point PQP\oplus Q when qq is a large prime, and the kk-first Fp\mathbb{F}_p coefficients of the asbcissa of the point PQP\oplus Q when q=pnq = p^n, where pp is a prime greater than 55. We show that the extracted bits are close to uniform. Our construction extends some interesting randomness extractors for elliptic curves, namely those defined in \cite{op} and \cite{ciss1,ciss2}, when P=Q\mathcal{P} = \mathcal{Q}. The proposed constructions can be used in any cryptographic schemes which require extraction of random bits from two sources over elliptic curves, namely in key exchange protole, design of strong pseudo-random number generators, etc

    Pseudorandom Functions and Permutations Provably Secure Against Related-Key Attacks

    Get PDF
    This paper fills an important foundational gap with the first proofs, under standard assumptions and in the standard model, of the existence of pseudorandom functions (PRFs) and pseudorandom permutations (PRPs) resisting rich and relevant forms of related-key attacks (RKA). An RKA allows the adversary to query the function not only under the target key but under other keys derived from it in adversary-specified ways. Based on the Naor-Reingold PRF we obtain an RKA-PRF whose keyspace is a group and that is proven, under DDH, to resist attacks in which the key may be operated on by arbitrary adversary-specified group elements. Previous work was able only to provide schemes in idealized models (ideal cipher, random oracle), under new, non-standard assumptions, or for limited classes of attacks. The reason was technical difficulties that we resolve via a new approach and framework that, in addition to the above, yields other RKA-PRFs including a DLIN-based one derived from the Lewko-Waters PRF. Over the last 15 years cryptanalysts and blockcipher designers have routinely and consistently targeted RKA-security; it is visibly important for abuse-resistant cryptography; and it helps protect against fault-injection sidechannel attacks. Yet ours are the first significant proofs of existence of secure constructs. We warn that our constructs are proofs-of-concept in the foundational style and not practical
    corecore