7,185 research outputs found

    Revenue Maximization in an Optical Router Node Using Multiple Wavelengths

    Get PDF
    In this paper, an optical router node with multiple wavelengths is considered. We introduce revenue for successful transmission and study the ensuing revenue maximization problem. We present an efficient and accurate heuristic procedure for solving the NP-hard revenue maximization problem and investigate the advantage offered by having multiple wavelengths

    Location models in the public sector

    Get PDF
    The past four decades have witnessed an explosive growth in the field of networkbased facility location modeling. This is not at all surprising since location policy is one of the most profitable areas of applied systems analysis in regional science and ample theoretical and applied challenges are offered. Location-allocation models seek the location of facilities and/or services (e.g., schools, hospitals, and warehouses) so as to optimize one or several objectives generally related to the efficiency of the system or to the allocation of resources. This paper concerns the location of facilities or services in discrete space or networks, that are related to the public sector, such as emergency services (ambulances, fire stations, and police units), school systems and postal facilities. The paper is structured as follows: first, we will focus on public facility location models that use some type of coverage criterion, with special emphasis in emergency services. The second section will examine models based on the P-Median problem and some of the issues faced by planners when implementing this formulation in real world locational decisions. Finally, the last section will examine new trends in public sector facility location modeling.Location analysis, public facilities, covering models

    Hierarchical location-allocation models for congested systems

    Get PDF
    In this paper we address the issue of locating hierarchical facilities in the presence of congestion. Two hierarchical models are presented, where lower level servers attend requests first, and then, some of the served customers are referred to higher level servers. In the first model, the objective is to find the minimum number of servers and their locations that will cover a given region with a distance or time standard. The second model is cast as a Maximal Covering Location formulation. A heuristic procedure is then presented together with computational experience. Finally, some extensions of these models that address other types of spatial configurations are offered.Hierarchical location, congestion, queueing

    Strategies for a centralized single product multiclass M/G/1 make-to-stock queue

    Get PDF
    Make-to-stock queues are typically investigated in the M/M/1 settings. For centralized single-item systems with backlogs, the multilevel rationing (MR) policy is established as optimal and the strict priority (SP) policy is a practical compromise, balancing cost and ease of implementation. However, the optimal policy is unknown when service time is general, i.e., for M/G/1 queues. Dynamic programming, the tool commonly used to investigate the MR policy in make-to-stock queues, is less practical when service time is general. In this paper we focus on customer composition: the proportion of customers of each class to the total number of customers in the queue. We do so because the number of customers in M/G/1 queues is invariant for any nonidling and nonanticipating policy. To characterize customer composition, we consider a series of two-priority M/G/1 queues where the first service time in each busy period is different from standard service times, i.e., this first service time is exceptional. We characterize the required exceptional first service times and the exact solution of such queues. From our results, we derive the optimal cost and control for the MR and SP policies for M/G/1 make-to-stock queues
    • …
    corecore