5 research outputs found

    Optimal Pricing Effect on Equilibrium Behaviors of Delay-Sensitive Users in Cognitive Radio Networks

    Full text link
    This paper studies price-based spectrum access control in cognitive radio networks, which characterizes network operators' service provisions to delay-sensitive secondary users (SUs) via pricing strategies. Based on the two paradigms of shared-use and exclusive-use dynamic spectrum access (DSA), we examine three network scenarios corresponding to three types of secondary markets. In the first monopoly market with one operator using opportunistic shared-use DSA, we study the operator's pricing effect on the equilibrium behaviors of self-optimizing SUs in a queueing system. %This queue represents the congestion of the multiple SUs sharing the operator's single \ON-\OFF channel that models the primary users (PUs) traffic. We provide a queueing delay analysis with the general distributions of the SU service time and PU traffic using the renewal theory. In terms of SUs, we show that there exists a unique Nash equilibrium in a non-cooperative game where SUs are players employing individual optimal strategies. We also provide a sufficient condition and iterative algorithms for equilibrium convergence. In terms of operators, two pricing mechanisms are proposed with different goals: revenue maximization and social welfare maximization. In the second monopoly market, an operator exploiting exclusive-use DSA has many channels that will be allocated separately to each entering SU. We also analyze the pricing effect on the equilibrium behaviors of the SUs and the revenue-optimal and socially-optimal pricing strategies of the operator in this market. In the third duopoly market, we study a price competition between two operators employing shared-use and exclusive-use DSA, respectively, as a two-stage Stackelberg game. Using a backward induction method, we show that there exists a unique equilibrium for this game and investigate the equilibrium convergence.Comment: 30 pages, one column, double spac

    Queueing Game For Spectrum Access in Cognitive Radio Networks

    Full text link
    In this paper, we investigate the problem of spectrum access decision-making for the Secondary Users (SUs) in the cognitive radio networks. When the Primary Users (PUs) are absent on certain frequency bandwidth, SUs can formulate a queue and wait for the Base Station (BS) to serve. The queue of the SUs will be dismissed if the PU is emerging in the system. Leveraging the queueing game approaches, the decision-making process of the SUs that whether to queue or not is studied. Both individual equilibrium and social optimization strategies are derived analytically. Moreover, the optimal pricing strategy of the service provider is investigated as well. Our proposed algorithms and corresponding analysis are validated through simulation studies

    Social Optimization and Pricing Policy in Cognitive Radio Networks with an Energy Saving Strategy

    Get PDF

    Channel Access and Reliability Performance in Cognitive Radio Networks:Modeling and Performance Analysis

    Get PDF
    Doktorgradsavhandling ved Institutt for Informasjons- og kommunikasjonsteknologi, Universitetet i AgderAccording to the facts and figures published by the international telecommunication union (ITU) regarding information and communication technology (ICT) industry, it is estimated that over 3.2 billion people have access to the Internet in 2015 [1]. Since 2000, this number has been octupled. Meanwhile, by the end of 2015, there were more than 7 billion mobile cellular subscriptions in the world, corresponding to a penetration rate of 97%. As the most dynamic segment in ICT, mobile communication is providing Internet services and consequently the mobile broadband penetration rate has reached 47% globally. Accordingly, capacity, throughput, reliability, service quality and resource availability of wireless services become essential factors for future mobile and wireless communications. Essentially, all these wireless technologies, standards, services and allocation policies rely on one common natural resource, i.e., radio spectrum. Radio spectrum spans over the electromagnetic frequencies between 3 kHz and 300 GHz. Existing radio spectrum access techniques are based on the fixed allocation of radio resources. These methods with fixed assigned bandwidth for exclusive usage of licensed users are often not efficient since most of the spectrum bands are under-utilized, either/both in the space domain or/and in the time domain. In reality, it is observed that many spectrum bands are largely un-occupied in many places [2], [3]. For instance, the spectrum bands which are exclusively allocated for TV broadcasting services in USA remain un-occupied from midnight to early morning according to the real-life measurement performed in [4]. In addition to the wastage of radio resources, spectrum under-utilization constraints spectrum availability for other intended users. Furthermore, legacy fixed spectrum allocation techniques are not capable of adapting to the changes and interactions in the system, leading to degraded network performance. Unlike in the static spectrum allocation, a fraction of the radio spectrum is allocated for open access as license-free bands, e.g., the industrial, scientific and medical (ISM) bands (902-928, 2400-2483.5, 5725-5850 MHz). In 1985, the federal communications commission (FCC) permitted to use the ISM bands for private and unlicensed occupancy, however, under certain restrictions on transmission power [5]. Consequently, standards like IEEE 802.11 for wireless local area networks (WLANs) and IEEE 802.15 for wireless personal area networks (WPAN) have grown rapidly with open access spectrum policies in the 2.4 GHz and 5 GHz ISM bands. With the co-existence of both similar and dissimilar radio technologies, 802.11 networks face challenges for providing satisfactory quality of service (QoS). This and the above mentioned spectrum under-utilization issues motivate the spectrum regulatory bodies to rethink about more flexible spectrum access for licenseexempt users or more efficient radio spectrum management. Cognitive radio (CR) is probably the most promising technology for achieving efficient spectrum utilization in future wireless networks
    corecore