5 research outputs found

    Optimal Prefix Codes for Infinite Alphabets with Nonlinear Costs

    Full text link
    Let P={p(i)}P = \{p(i)\} be a measure of strictly positive probabilities on the set of nonnegative integers. Although the countable number of inputs prevents usage of the Huffman algorithm, there are nontrivial PP for which known methods find a source code that is optimal in the sense of minimizing expected codeword length. For some applications, however, a source code should instead minimize one of a family of nonlinear objective functions, Ξ²\beta-exponential means, those of the form log⁑aβˆ‘ip(i)an(i)\log_a \sum_i p(i) a^{n(i)}, where n(i)n(i) is the length of the iith codeword and aa is a positive constant. Applications of such minimizations include a novel problem of maximizing the chance of message receipt in single-shot communications (a<1a<1) and a previously known problem of minimizing the chance of buffer overflow in a queueing system (a>1a>1). This paper introduces methods for finding codes optimal for such exponential means. One method applies to geometric distributions, while another applies to distributions with lighter tails. The latter algorithm is applied to Poisson distributions and both are extended to alphabetic codes, as well as to minimizing maximum pointwise redundancy. The aforementioned application of minimizing the chance of buffer overflow is also considered.Comment: 14 pages, 6 figures, accepted to IEEE Trans. Inform. Theor

    On nonlinear compression costs: when Shannon meets R\'enyi

    Full text link
    Shannon entropy is the shortest average codeword length a lossless compressor can achieve by encoding i.i.d. symbols. However, there are cases in which the objective is to minimize the \textit{exponential} average codeword length, i.e. when the cost of encoding/decoding scales exponentially with the length of codewords. The optimum is reached by all strategies that map each symbol xix_i generated with probability pip_i into a codeword of length β„“D(q)(i)=βˆ’log⁑Dpiqβˆ‘j=1Npjq\ell^{(q)}_D(i)=-\log_D\frac{p_i^q}{\sum_{j=1}^Np_j^q}. This leads to the minimum exponential average codeword length, which equals the R\'enyi, rather than Shannon, entropy of the source distribution. We generalize the established Arithmetic Coding (AC) compressor to this framework. We analytically show that our generalized algorithm provides an exponential average length which is arbitrarily close to the R\'enyi entropy, if the symbols to encode are i.i.d.. We then apply our algorithm to both simulated (i.i.d. generated) and real (a piece of Wikipedia text) datasets. While, as expected, we find that the application to i.i.d. data confirms our analytical results, we also find that, when applied to the real dataset (composed by highly correlated symbols), our algorithm is still able to significantly reduce the exponential average codeword length with respect to the classical `Shannonian' one. Moreover, we provide another justification of the use of the exponential average: namely, we show that by minimizing the exponential average length it is possible to minimize the probability that codewords exceed a certain threshold length. This relation relies on the connection between the exponential average and the cumulant generating function of the source distribution, which is in turn related to the probability of large deviations. We test and confirm our results again on both simulated and real datasets.Comment: 22 pages, 9 figure
    corecore