5 research outputs found

    Indexing Metric Spaces for Exact Similarity Search

    Full text link
    With the continued digitalization of societal processes, we are seeing an explosion in available data. This is referred to as big data. In a research setting, three aspects of the data are often viewed as the main sources of challenges when attempting to enable value creation from big data: volume, velocity and variety. Many studies address volume or velocity, while much fewer studies concern the variety. Metric space is ideal for addressing variety because it can accommodate any type of data as long as its associated distance notion satisfies the triangle inequality. To accelerate search in metric space, a collection of indexing techniques for metric data have been proposed. However, existing surveys each offers only a narrow coverage, and no comprehensive empirical study of those techniques exists. We offer a survey of all the existing metric indexes that can support exact similarity search, by i) summarizing all the existing partitioning, pruning and validation techniques used for metric indexes, ii) providing the time and storage complexity analysis on the index construction, and iii) report on a comprehensive empirical comparison of their similarity query processing performance. Here, empirical comparisons are used to evaluate the index performance during search as it is hard to see the complexity analysis differences on the similarity query processing and the query performance depends on the pruning and validation abilities related to the data distribution. This article aims at revealing different strengths and weaknesses of different indexing techniques in order to offer guidance on selecting an appropriate indexing technique for a given setting, and directing the future research for metric indexes

    Pivot-based Metric Indexing

    Get PDF
    The general notion of a metric space encompasses a diverse range of data types and accompanying similarity measures. Hence, metric search plays an important role in a wide range of settings, including multimedia retrieval, data mining, and data integration. With the aim of accelerating metric search, a collection of pivot-based indexing techniques for metric data has been proposed, which reduces the number of potentially expensive similarity comparisons by exploiting the triangle inequality for pruning and validation. However, no comprehensive empirical study of those techniques exists. Existing studies each offers only a narrower coverage, and they use different pivot selection strategies that affect performance substantially and thus render cross-study comparisons difficult or impossible. We offer a survey of existing pivot-based indexing techniques, and report a comprehensive empirical comparison of their construction costs, update efficiency, storage sizes, and similarity search performance. As part of the study, we provide modifications for two existing indexing techniques to make them more competitive. The findings and insights obtained from the study reveal different strengths and weaknesses of different indexing techniques, and offer guidance on selecting an appropriate indexing technique for a given setting.</jats:p

    Optimal Pivots to Minimize the Index Size for Metric Access Methods

    No full text
    corecore