910 research outputs found

    Optimal Parallel Randomized Algorithms for the Voronoi Diagram of Line Segments in the Plane and Related Problems

    Get PDF
    In this paper, we present an optimal parallel randomized algorithm for the Voronoi diagram of a set of n non-intersecting (except possibly at endpoints) line segments in the plane. Our algorithm runs in O(log n) time with very high probability and uses O(n) processors on a CRCW PRAM. This algorithm is optimal in terms of P.T bounds since the sequential time bound for this problem is Ω(n log n). Our algorithm improves by an O(log n) factor the previously best known deterministic parallel algorithm which runs in O(log2 n) time using O(n) processors [13]. We obtain this result by using random sampling at two stages of our algorithm and using efficient randomized search techniques. This technique gives a direct optimal algorithm for the Voronoi diagram of points as well (all other optimal parallel algorithms for this problem use reduction from the 3-d convex hull construction)

    Computing largest circles separating two sets of segments

    Get PDF
    A circle CC separates two planar sets if it encloses one of the sets and its open interior disk does not meet the other set. A separating circle is a largest one if it cannot be locally increased while still separating the two given sets. An Theta(n log n) optimal algorithm is proposed to find all largest circles separating two given sets of line segments when line segments are allowed to meet only at their endpoints. In the general case, when line segments may intersect Ω(n2)\Omega(n^2) times, our algorithm can be adapted to work in O(n alpha(n) log n) time and O(n \alpha(n)) space, where alpha(n) represents the extremely slowly growing inverse of the Ackermann function.Comment: 14 pages, 3 figures, abstract presented at 8th Canadian Conference on Computational Geometry, 199

    Searching edges in the overlap of two plane graphs

    Full text link
    Consider a pair of plane straight-line graphs, whose edges are colored red and blue, respectively, and let n be the total complexity of both graphs. We present a O(n log n)-time O(n)-space technique to preprocess such pair of graphs, that enables efficient searches among the red-blue intersections along edges of one of the graphs. Our technique has a number of applications to geometric problems. This includes: (1) a solution to the batched red-blue search problem [Dehne et al. 2006] in O(n log n) queries to the oracle; (2) an algorithm to compute the maximum vertical distance between a pair of 3D polyhedral terrains one of which is convex in O(n log n) time, where n is the total complexity of both terrains; (3) an algorithm to construct the Hausdorff Voronoi diagram of a family of point clusters in the plane in O((n+m) log^3 n) time and O(n+m) space, where n is the total number of points in all clusters and m is the number of crossings between all clusters; (4) an algorithm to construct the farthest-color Voronoi diagram of the corners of n axis-aligned rectangles in O(n log^2 n) time; (5) an algorithm to solve the stabbing circle problem for n parallel line segments in the plane in optimal O(n log n) time. All these results are new or improve on the best known algorithms.Comment: 22 pages, 6 figure

    Linear-Time Algorithms for Geometric Graphs with Sublinearly Many Edge Crossings

    Full text link
    We provide linear-time algorithms for geometric graphs with sublinearly many crossings. That is, we provide algorithms running in O(n) time on connected geometric graphs having n vertices and k crossings, where k is smaller than n by an iterated logarithmic factor. Specific problems we study include Voronoi diagrams and single-source shortest paths. Our algorithms all run in linear time in the standard comparison-based computational model; hence, we make no assumptions about the distribution or bit complexities of edge weights, nor do we utilize unusual bit-level operations on memory words. Instead, our algorithms are based on a planarization method that "zeroes in" on edge crossings, together with methods for extending planar separator decompositions to geometric graphs with sublinearly many crossings. Incidentally, our planarization algorithm also solves an open computational geometry problem of Chazelle for triangulating a self-intersecting polygonal chain having n segments and k crossings in linear time, for the case when k is sublinear in n by an iterated logarithmic factor.Comment: Expanded version of a paper appearing at the 20th ACM-SIAM Symposium on Discrete Algorithms (SODA09

    Improved Implementation of Point Location in General Two-Dimensional Subdivisions

    Full text link
    We present a major revamp of the point-location data structure for general two-dimensional subdivisions via randomized incremental construction, implemented in CGAL, the Computational Geometry Algorithms Library. We can now guarantee that the constructed directed acyclic graph G is of linear size and provides logarithmic query time. Via the construction of the Voronoi diagram for a given point set S of size n, this also enables nearest-neighbor queries in guaranteed O(log n) time. Another major innovation is the support of general unbounded subdivisions as well as subdivisions of two-dimensional parametric surfaces such as spheres, tori, cylinders. The implementation is exact, complete, and general, i.e., it can also handle non-linear subdivisions. Like the previous version, the data structure supports modifications of the subdivision, such as insertions and deletions of edges, after the initial preprocessing. A major challenge is to retain the expected O(n log n) preprocessing time while providing the above (deterministic) space and query-time guarantees. We describe an efficient preprocessing algorithm, which explicitly verifies the length L of the longest query path in O(n log n) time. However, instead of using L, our implementation is based on the depth D of G. Although we prove that the worst case ratio of D and L is Theta(n/log n), we conjecture, based on our experimental results, that this solution achieves expected O(n log n) preprocessing time.Comment: 21 page

    Optimal randomized incremental construction for guaranteed logarithmic planar point location

    Full text link
    Given a planar map of nn segments in which we wish to efficiently locate points, we present the first randomized incremental construction of the well-known trapezoidal-map search-structure that only requires expected O(nlogn)O(n \log n) preprocessing time while deterministically guaranteeing worst-case linear storage space and worst-case logarithmic query time. This settles a long standing open problem; the best previously known construction time of such a structure, which is based on a directed acyclic graph, so-called the history DAG, and with the above worst-case space and query-time guarantees, was expected O(nlog2n)O(n \log^2 n). The result is based on a deeper understanding of the structure of the history DAG, its depth in relation to the length of its longest search path, as well as its correspondence to the trapezoidal search tree. Our results immediately extend to planar maps induced by finite collections of pairwise interior disjoint well-behaved curves.Comment: The article significantly extends the theoretical aspects of the work presented in http://arxiv.org/abs/1205.543

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm

    Farthest-Polygon Voronoi Diagrams

    Get PDF
    Given a family of k disjoint connected polygonal sites in general position and of total complexity n, we consider the farthest-site Voronoi diagram of these sites, where the distance to a site is the distance to a closest point on it. We show that the complexity of this diagram is O(n), and give an O(n log^3 n) time algorithm to compute it. We also prove a number of structural properties of this diagram. In particular, a Voronoi region may consist of k-1 connected components, but if one component is bounded, then it is equal to the entire region

    The projector algorithm: a simple parallel algorithm for computing Voronoi diagrams and Delaunay graphs

    Full text link
    The Voronoi diagram is a certain geometric data structure which has numerous applications in various scientific and technological fields. The theory of algorithms for computing 2D Euclidean Voronoi diagrams of point sites is rich and useful, with several different and important algorithms. However, this theory has been quite steady during the last few decades in the sense that no essentially new algorithms have entered the game. In addition, most of the known algorithms are serial in nature and hence cast inherent difficulties on the possibility to compute the diagram in parallel. In this paper we present the projector algorithm: a new and simple algorithm which enables the (combinatorial) computation of 2D Voronoi diagrams. The algorithm is significantly different from previous ones and some of the involved concepts in it are in the spirit of linear programming and optics. Parallel implementation is naturally supported since each Voronoi cell can be computed independently of the other cells. A new combinatorial structure for representing the cells (and any convex polytope) is described along the way and the computation of the induced Delaunay graph is obtained almost automatically.Comment: This is a major revision; re-organization and better presentation of some parts; correction of several inaccuracies; improvement of some proofs and figures; added references; modification of the title; the paper is long but more than half of it is composed of proofs and references: it is sufficient to look at pages 5, 7--11 in order to understand the algorith

    A Randomized Incremental Algorithm for the Hausdorff Voronoi Diagram of Non-crossing Clusters

    Full text link
    In the Hausdorff Voronoi diagram of a family of \emph{clusters of points} in the plane, the distance between a point tt and a cluster PP is measured as the maximum distance between tt and any point in PP, and the diagram is defined in a nearest-neighbor sense for the input clusters. In this paper we consider %El."non-crossing" \emph{non-crossing} clusters in the plane, for which the combinatorial complexity of the Hausdorff Voronoi diagram is linear in the total number of points, nn, on the convex hulls of all clusters. We present a randomized incremental construction, based on point location, that computes this diagram in expected O(nlog2n)O(n\log^2{n}) time and expected O(n)O(n) space. Our techniques efficiently handle non-standard characteristics of generalized Voronoi diagrams, such as sites of non-constant complexity, sites that are not enclosed in their Voronoi regions, and empty Voronoi regions. The diagram finds direct applications in VLSI computer-aided design.Comment: arXiv admin note: substantial text overlap with arXiv:1306.583
    corecore