19,840 research outputs found

    Queue-Architecture and Stability Analysis in Cooperative Relay Networks

    Full text link
    An abstraction of the physical layer coding using bit pipes that are coupled through data-rates is insufficient to capture notions such as node cooperation in cooperative relay networks. Consequently, network-stability analyses based on such abstractions are valid for non-cooperative schemes alone and meaningless for cooperative schemes. Motivated from this, this paper develops a framework that brings the information-theoretic coding scheme together with network-stability analysis. This framework does not constrain the system to any particular achievable scheme, i.e., the relays can use any cooperative coding strategy of its choice, be it amplify/compress/quantize or any alter-and-forward scheme. The paper focuses on the scenario when coherence duration is of the same order of the packet/codeword duration, the channel distribution is unknown and the fading state is only known causally. The main contributions of this paper are two-fold: first, it develops a low-complexity queue-architecture to enable stable operation of cooperative relay networks, and, second, it establishes the throughput optimality of a simple network algorithm that utilizes this queue-architecture.Comment: 16 pages, 1 figur

    Maximum Throughput of a Cooperative Energy Harvesting Cognitive Radio User

    Full text link
    In this paper, we investigate the maximum throughput of a saturated rechargeable secondary user (SU) sharing the spectrum with a primary user (PU). The SU harvests energy packets (tokens) from the environment with a certain harvesting rate. All transmitters are assumed to have data buffers to store the incoming data packets. In addition to its own traffic buffer, the SU has a buffer for storing the admitted primary packets for relaying; and a buffer for storing the energy tokens harvested from the environment. We propose a new cooperative cognitive relaying protocol that allows the SU to relay a fraction of the undelivered primary packets. We consider an interference channel model (or a multipacket reception (MPR) channel model), where concurrent transmissions can survive from interference with certain probability characterized by the complement of channel outages. The proposed protocol exploits the primary queue burstiness and receivers' MPR capability. In addition, it efficiently expends the secondary energy tokens under the objective of secondary throughput maximization. Our numerical results show the benefits of cooperation, receivers' MPR capability, and secondary energy queue arrival rate on the system performance from a network layer standpoint.Comment: Part of this paper was accepted for publication in PIMRC 201

    Protocol Design and Stability Analysis of Cooperative Cognitive Radio Users

    Full text link
    A single cognitive radio transmitter--receiver pair shares the spectrum with two primary users communicating with their respective receivers. Each primary user has a local traffic queue, whereas the cognitive user has three queues; one storing its own traffic while the other two are relaying queues used to store primary relayed packets admitted from the two primary users. A new cooperative cognitive medium access control protocol for the described network is proposed, where the cognitive user exploits the idle periods of the primary spectrum bands. Traffic arrival to each relaying queue is controlled using a tuneable admittance factor, while relaying queues service scheduling is controlled via channel access probabilities assigned to each queue based on the band of operation. The stability region of the proposed protocol is characterized shedding light on its maximum expected throughput. Numerical results demonstrate the performance gains of the proposed cooperative cognitive protocol.Comment: Accepted in WCNC 201
    corecore